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BBEIEHUNE

25 okraops 2009 1. B Benl'V cocrostiack Bropast ceccust Poccuiicko-Kuraiickoro cummosu-
yma «Kowmriekcubiit ananu3 u ero npusoxkenus. [lepsas ceccust nponuia B Mockse B Uncru-
tyTe npobsiem yrupasienans PAH ¢ 21 mo 24 oktabps 2009 r. 9tu ceccun OBLIN OPraHU30BAHBI
Poccuiickum dormom dbyrnamentanbubix uccaenopanuii (POOU) u Hanmonanbubiv dhoxgoM
ecrecrBenbix Hayk Kuras (HOEK) B pamkax coBmecTHOro Hay4dHoro npoekta « KoMriekcHbrit
aHaJM3 U ero npuioxKenus» upu nomjepxkke UITY PAH u Benl'V.

B opranmsanmonnsiii komurer ceccun o A. I1. Commaros (Benropon, Poccunst) mpesce-
narenb, U.-Y. dur (Tonkonr, KHP), novernsiit npeacenarens, A. I. Anekcanapos (Mocksa,
Poccus), I1.Xy (Ilanmonr, KHP).

Ceccus Obla OCBATIEHA KOMILIEKCHOMY aHAJIN3Y U €ro MPUJIOXKEHUIM B Teopun auddepeH-
[UATHHBIX YPABHEHU, TMHAMIYIECKUX CUCTEM, B TOIIOJIOTUU U T€OMETPUU, B Teopun (DYHKIUNA 1
up. lesnbio cummnosnyma gBUI0OChH 00CyKeHNe Hanbojee aKTya dbHBIX ITPOOJIEM KOMILIEKCHOT'O
aHAJIN3a U €ro MPUJIOKEHUI, BbISIBJICHIE HOBBIX TIEPCIECKTUB Pa3BUTUs HAYYHBIX HCCJICIOBAHNI,
a TaKyKe BO3MOYKHOCTEM JIJIsi COBMECTHBIX HAYYHBIX UCCJICTOBAHUIA.

B cocTaB nnocTpaHHBIX YIACTHUKOB KOH(DEPEHITMHU BOIILIN TaKUEe KPYITHbIE MATEMaTHKH, KaK
npod. I1.Xy (Hu Peichu — KHP), npod. U.Y. dur (Chung Chun Yang - l'onkonr), nmpod. Baur
(Wang Jian Ping — KHP), npod. Kcto (Jun Feng Xu - KHP), npod Kuan T. (Tao Qian —
Apcrpasus) , npod. 1. Tamkuma (Sh. Tajima — Anorus) u ap. C 0630pHBIM JOKJIATIOM BbI-
CTYIUJI efcTBUTEbHBIN WieH moabekoit AH, mpod. B. Bospckmii. B reorpadun nayanbx 1o-
KJIQJIOB TIpeJicTaB/ienbl Takke Xapbkos u lonenk (Ykpanna), Amva-Ara (Kasaxcran), Epesan
(Apmenust).

B pamkax mHay4HOI IpOrpaMMbl ¢ POCCUNICKON CTOPOHBI NMPUHSIN YIACTHE M3BECTHBIE CIIe-
[UAJMCTBI B 00JIACTU KOMILIEKCHOTO aHa/m3a u JuddepeHnaj bHbIX YPaBHEHUN U3 MHOI'HX
HayJIHBIX NEHTPOB cTpaHbl, BKIOYasg MockBy, Cankr-IlerepOypr, HoBocubupck, Yensiomack,
Yy, Kpacrogpck u yHUBEpCUTETHI TIEHTPAJILHOTO pernoHa. B yactroctu, o MoCKOBCKOTO TO-
CYJIApPCTBEHHOTO YHUBEPCHUTETA BBICTYIIIN ¢ JoKaagamu mpodeccopa B.H. Uybapukos (nexkan
MexaHUKO-MaremaTuaeckoro dgakysabrera) u E.B. Pankesuu, A.B. Boposckux (kadempa mud-
dbepennmasbabx ypasuennii), Boraucimrenpubiii ientp uMm. Jopomuunsina PAH npeacrasien
npod. B.I1. Baacosbim, npunsiim Takzke yaacrue npod. A.W. Hazapos (Cankr-IlerepOyprexmii
rocynusepcuter) u ipod. A.U. Koxanos (Hosocubupckuii rocynusepcurer). B pabore cumrmo-
3uyMa IMMIPOKOE yYIaCThe MPUHSAIA BEIYIIHe MaTeMATUKN BeropoacKkoro rocyHuBEpCuTeTa —
upod. A.Il. Commaros, mpod.A.M. Meitpmanos, npod. O.M. Ileakun, npod. A.B. [nymaxk,
npod. C.A. I'purierko u ap. Tpyapl cuMIosuyMa MnpeacTaBaeHbl B HECKOJBKAX HOMEPaX »Kyp-
naja «Haydnble BejjoMocTnn Benropojickoro rocy/iapcTBEHHOTO YHUBEPCHTETA», BKJIOYas Ha-
CTOAIINN BBIIIYCK.
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RESIDUES OF LOGARITHMIC DIFFERENTIAL FORMS
A.G. Aleksandrov

Institute for Control Sciences, Russian Academy of Sciences,
Profsojuznaja str., 65, Moscow, 117997, Russian Federation, e-mail: ag aleksandrov@mail.ru

Abstract. In this note we give an elementary introduction to the theory of logarithmic differential
forms and their residues. In particular, we consider some properties of logarithmic differential forms
related with properties of the torsion holomorphic differentials on singular hypersurfaces, briefly discuss
the definitions of residues due to Poincaré, Leray and Saito, and then explain an elegant description of
the modules of regular meromorphic differential forms in terms of residues of meromorhic differential
forms logarithmic along a hypersurface with arbitrary singularities.

Keywords: logarithmic differential forms, residue-forms, residue map, regular meromorphic dif-
ferential forms, torsion holomorphic differentials.

Introduction

From the historical point of view, the concept of logarithmic differential form had its origin in
the classical theory of residues. The term "residue" (together with its formal definition) appeared
for the first time in an article by A.Cauchy (1826), although one can find such a notion as
implicit in Cauchy’s prior work (1814) about the computation of particular integrals which
were related with his research towards hydrodynamics. For the next three-four years, Cauchy
developed residue calculus and applied it to the computation of integrals, the expansion of
functions as series and infinite products, the analysis of differential equations, and so on ...

Though it was already transparent in the pioneer work of N.Abel, a major step towards the
elaboration of the residue concept was made by H. Poincaré who introduced in 1887 the notion
of differential residue 1-form attached to any rational differential 2-form in C? with simple
poles along a smooth complex curve. Subsequently E. Picard (1901), G. de Rham (1932/36),
A.Weil (1947) obtained a series of similar results about residues of meromorphic forms of degree
1 and 2 on complex manifolds; such developments were associated with cohomological ideas,
leading to the formulation of cohomological residue formulae. Such cohomological ideas were
later pursued by G. de Rham (1954) and J.Leray (1959) who defined and studied residues of
d-closed C* regular differential ¢-forms on S\ D with poles of the first order along a smooth
hypersurface D in some complex manifold S, ¢ > 1.

In 1972 J.-B. Poly [24] proved that Leray residue is well determined for any (not necessarily
d-closed) semi-meromorphic differential forms w as soon as w and dw have simple poles along
a hypersurface.

In fact, for the first time these two conditions were considered by P.Deligne [11]; he introduced
the notion of meromorphic differential forms with logarithmic poles along a divisor, normal
crossings of smooth irreducible components. In such context this notion was extensively studied
in algebraic geometry and in differential equations by many authors (for example, by Ph.Griffiths,

A.G. Alexandrov partially supported by the Russian Foundation of Basic Research (RFBR) and by the
National Natural Science Foundation of China (NSFC) in the framework of the bilateral project "Complex
Analysis and its applications" (project No. 08-01-92208)
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J.Steenbrink, N.Katz). As a result in 1975, Kyoji Saito [25] considered meromorphic differential
forms satisfied these conditions in the case of divisors with arbitrary singularities. Somewhat
later, his note has been published in a volume [26] of the RIMS-publication series, which is
not accessible to many of those interested in the subject. Saito established the basic properties
of logarithmic differential forms and studied some applications to computing Gauss-Manin
connection associated with the minimal versal deformations of simple hypersurface singularities
of types Ay and Az. In 1980 a paper by Saito [27] was published; it contains an essential part
of materials of the above mentioned works. Among other things, in this paper a general notion
and important properties of residues of logarithmic differential forms are discussed in detail.

At present time the theory of logarithmic differential forms is exploited fruitfully in various
fields of modern mathematics. Among them, one can mention the following:

complex algebraic geometry (the cohomology theory of algebraic varieties and Hodge theory
[12], [10], [29], etc.),

topology and geometry (the theory of arrangements of real and complex hyperplanes [21],
[7], the fundamental group of the complement of a singular hypersurface [19], etc.),

the theory of singularities, the deformation theory and the theory of Gauss-Manin connexion
[26], [4], etc.,

the theory of D-modules, the microlocal analysis, the theory of differential equations [11],
[22], the theory of flat coordinate systems [28], etc.,

complex analysis (the theory of Abel’s integrals [15], Torelli theorems, the theory of primitive
forms and their periods [16], etc.),

the theory of special functions (generalized hypergeometric functions [12], etc.),

mathematical and theoretical physics (the theory of Frobenius varieties and the topological
field theory [20], etc.)

Of course, this list is quite incomplete and can be easily extended by the specialists in
related fields of mathematics.

Following our previous work [3] in this note we give an elementary introduction to the theory
of logarithmic differential forms and their residues. In Section 1 we recall the basic notations,
definitions and properties of logarithmic differential forms along a reduced hypersurface in a
complex analytic manifold. In Section 2 we consider some relations of logarithmic differential
forms and torsion holomorphic differentials on singular hypersurfaces. In the next sections we
briefly discuss the definitions of Poincaré, de Rham, Leray and Saito residues, and apply the
theory of regular meromorphic differential forms to the case of singular hypersurfaces. Among
other things, we obtain a highly elegant description of these modules on an arbitrary singular
hypersurface D in terms of residues of logarithmic differential forms.

1 Logarithmic differential forms

Let U be an open subset of C™, and let D be a hypersurface defined by an equation h(z) = 0,
where h(z) = h(z,...,2n) is a holomorphic function in U, and zi,...,z, is a system of
coordinates. Suppose that D is reduced, that is, h(z) has no multiple factors.

Definition 1.1 ([25], [27]) A meromorphic differential ¢-form w, ¢ > 0, on U is called
logarithmic (along a divisor D) if w and its differential dw have poles along D at worst of
the first order. It means that hw and hdw are holomorphic differential forms on U.
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Remark 1.2 In fact, for the first time the above two conditions appeared in a work by Deligne
(see [11], Prop. 3.2, (i), p.72) who studied meromorphic differential forms with logarithmic poles
along divisors with normal crossings (thus, such a divisor D is the union of its smooth irreducible
components).

In practical computations, the second condition is usually replaced by the condition “dh A w
is a holomorphic differential form on U”; both conditions are equivalent, in view of the identity
dlhw) =dh ANw+ h - dw.

Let S be an m-dimensional complex manifold, and let Q% = (Q%, d)q o1,. be the de Rham
complex of germs of holomorphic differential forms on S, whose terms, locally at the point

x € 5, are defined as follows:
Qq&m = OS,m(- .o 7dZi1 VANRAN dZiq, . .>, (’il, ce ,’iq) c [1,m]

Let D be a reduced hypersurface of S, and let h = 0 be an equation of D, locally at the point
x € D. A meromorphic ¢-form w is logarithmic along D at z, if hw and hdw are holomorphic.
We denote the Og,-module of germs of logarithmic g-form at x and the corresponding sheaf
of logarithmic differential g-form on S by Q% (log D) and Q%(log D), respectively. Thus, the
Og-module Q% (log D) is a submodule of Q%(xD), consisting of all the “differential forms with
polar singularities along D.” Obviously, the sheaves Q%(log D) and QY coincide off the divisor
D, for all ¢ > 0. By definition,

1

In what follows, when we consider the local situation the point x will be taken to be 0 for

simplicity. We shall also assume that U is an open subset of C™ containing the origin.

Qg’x(log D) = Qg,x >~ 050, Q4. (logD) =

Example 1.3 Suppose D C U be a hyperplane or, more generally, a smooth hypersurface
defined by the equation z; = 0. Then

<1

QL o(log D) = oso<% dzy, . .. ,dzm>

is a free Ogo-module of rank m, generated by the forms dz; /21, dzs, ..., dz,. Moreover,

q
Q% o(log D) = /\Qfg,o(logD), I<g<m

Example 1.4 More generally, let us consider the case when D is the union of £ < m coordinates
hyperplanes in S = C™. In other words, D is a strong normal crossing. This case considered in
many works published before Saito’s preprint [25]. Then the defining equation of D is written

as follows: h = z; - - -z, = 0, and an easy calculation shows that
d d
Qg (log D) = OSO< L s AZp1y oy d2m>a

Z1 Zk

and for all 1 < g < m there are the following isomorphisms

QY o(log D) = /\Q (log D).

Thus, Q% ,(log D) is a free Og-module of rank (7(’;)
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The following statement is a direct consequence of the basic definition (see [1], or [2], §1).

Claim 1.5 Let D C U be a reduced hypersurface defined by the equation h = 0. Then for any
q > 1 there exists a natural isomorphism of Ogo-modules

Q% ﬂ ((dh/h) AQ%EY) =2 dh A Q%L (log D).

Proof. Let us remark at first that there is a natural inclusion
QLo () ((dh/h) A QL) — dh A Q%L (log D).

If an element w € Q?s*,o belongs to the Og¢-module on the left side, then it can be represented
in the form w = (dh/h) A n for some 7 € Qquol. Hence, by definition,

(n/h) € Q%4 (log D) = w € dh A Q%' (log D),

and we obtain the desirable inclusion. On the other hand, h-Qquol(log D) C Qquol. Multiplication
by Adh induces the map

dh
dh A Q% (log D) — — A Ly

Obviously this gives us the inverse map to the first inclusion. This completes the proof of Claim.

Lemma 1.6 ([27], (1.1),4i1))) Let w be a meromorphic q-form on U, ¢ > 0, and let D C U be
a hypersurface as above. Then w is logarithmic along D if and only if there exist a holomorphic
function g defining a hypersurface V- C U, a holomorphic (¢ — 1)-form & and a holomorphic
q-form n on U such that

a)dimg DNV <m —2,

dh
b)ngf/\f—l—n.

Proof. For simplicity let us consider the case m = 2. Suppose that w is a logarithmic ¢-form.
Then we have
o a1d21 + CLQdZQ

W—T, dh Nw =

hyag — b c
Mdm Ndz < b(z)dz1 A dza,

where a1, ay and b(z) are holomorphic, and h; = 0h/0z;, i = 1, 2. Further,

o h’laldzl + hllagdZQ o

h/
1w h

2a1d2’2 = d—h A ay + b(z)dzs.

hiairdz; + hhaydze N hiay —h
h

h h

It means that

dh
hiw = > A ay + b(z)dz.



Beal'y

A.G. Alexandrov. Residues of logarithmic ... % 10

1876

There is analogous representation for hjw, and hence for any gw, where g € J(h) = (h], h}),
the Jacobian ideal of h. Since D is reduced, there is a function g € J(h) defining a non-zero
divisor in Op/(h) as required in the condition a).

Conversely, the relation b) implies that

ho —dhn S+

g9 9
that is, hw and dh A w are holomorphic in codimension > 2, hence, in virtue of the Riemann
extension theorem, they are holomorphic everywhere. This completes the proof when m = 2.
The general case can be considered analogously.

Corollary 1.7 ([25]) With the preceding notations the following conditions are equivalent:

1) w e Q%(log D),

h dh
g wEWAQ%_l—I—Q?] forall i=1,...,m.
Zj

2)

Corollary 1.8 The sheaves Qi(log D), ¢ = 0,1,...,m, are Og-modules of finite type; the
direct sum @Z;OQ‘é(log D) is an Og-exterior algebra closed under the exterior differentiation d.

As a consequence, Q%(log D) are coherent sheaves of Og-modules for all ¢ > 0.

2 Torsion differentials

In this section we consider simple relations between logarithmic differential forms and torsion
holomorphic differentials on hypersurfaces with singularities. By definition, Op g = Og0/(h)Og,,
and
-1
0L, =L, /(h- Q4 +dhAQET), q>1.

Thus, QqD70 is the Op g-module of germs of holomorphic differential forms on the hypersurface
D at the point 0 € D. The module QlD7O is usually called the module of Ké&hler regular
differentials. The standard differentiation d induces the action on QF, ; denoted by the same
symbol. Thus, the de Rham complex of sheaves of germs of holomorphic differential forms on

D is well defined:
b= (Q%’d)q:o,l,...‘

For completeness, recall the notion of torsion. Given a commutative ring A with the total
ring of fractions F, and an A-module N of finite type, we consider the kernel of the canonical
map t: N — N ®4 F, the torsion submodule of N, and denote it by Tors N; it consists of all
the elements of N which are killed by non-zero divisors of A.

It is well-known that torsion differentials Tors Q%,o play a key role in analysis of topology
and geometry of singular varieties. In the case of an isolated n-dimensional singularity (D, 0),
the torsion modules Tors QqD70 are trivial for all ¢ = 1,...,n — 1, while Tors {2}, is a finite
dimensional vector space. Furthermore, if D is the quasi-homogeneous germ of a hypersurface
or complete intersection with isolated singularities then dim cTorsQp, , = u, where i is the
Milnor number of D; it is a very important topological invariant of the singularity.

The following examples show that generators of the module of logarithmic differential forms
are naturally expressed through torsion differentials on D.
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Example 2.1 Suppose S = C? and consider the hypersurface D given by the equation h =
xy = 0. It is a plane curve with a node. In other words, it is an A;-singularity, a very particular
case of strong normal crossing from Example 1.4. Then

dr d
Qé,o(logD) = OS70<?> Ey>’ Qéo(log D) = OS,0<

dz N\ dy
Y

are free Ogo-modules of rank 2 and 1, respectively. In this case there is also the following
representation: Qg o(log D) = Ogo(dh/h, 0/h), where § = ydx — xdy. It is not difficult to verify
that 6 € Tors Q}lo- Indeed, taking a non-zero divisor (z +y) € Op one obtains the following
identities in Qp :

(x +1y)-0 = zydr — 22dy + y*dx — xydy = —(x — y)dh + 2h(dx — dy) = 0.
Moreover, in this case, Tors Qp, o = Opo(f) = C(), p=1.

Example 2.2 (cf. [30]) With the preceding notations let D C S be a plane curve with a cusp
given by the equation h = 22 —y® = 0. In other words, it is an A,-singularity. Easy calculations
show that

dh 2ydr — 3xd dr Nd
O1og D) = Osa G ZE7 2, 0 10y D) = 05 L)

are again free Ogo-modules of rank 2 and 1, respectively. Notice that the numerator of the
second generator of (21570 (log D), the differential 1-form 6 = 2ydx — 3xdy, represents an element
of the torsion submodule Tors Qj, ; C Q. Indeed, in our case A = Opo = C(t,*), N =
Q}lo’ F = C(t), and the mapping ¢ is given by the normalization of D, that is, z = 3, y = 2.
Thus, +() = +(2ydz —3xdy) = 2t*dt> —3t°dt* = 0, that is, § € Ker(:) = Tors Qp, ;. Equivalently,
take a non-zero divisor x € Op . One then obtains z-0 = 2zrydx — 32*dy = Shdz — 3xzdh = 0 in
Qpo = Q50/ (B Qo +dhAOgp). Further calculations show (cf. [30]) that Tors Qp, , = Op o(f) =
C(0, y-0), that is, pu = 2.

Proposition 2.3 ([1]) For g =1,...,m, there are exact sequences of Ogo-modules

0— 9%51/h : Qq&_ol(l‘)g D) A, Qqs,o/h : Q?s*,o - QqD,O — 0,

0 — Q%o /dh A QL (log D) " Q% Jdh A Q% — Q% ) — 0,

dh :
0— Q%+ > A Q?gz)l — Q5 (log D) —, Tors Qb — 0,

where the homomorphisms of exterior and usual multiplication are denoted by Ndh and by -h,
respectively.

Proof. The exactness of the first and second sequences follows directly from the basic
Definition 1.1. Let us consider a differential ¢-form w € Qqs_ol represented an element of the

quotient Q%Bl/h-Q%}]l(log D). Suppose dh Aw = h-n, n € Q% ,, and set © = w/h. It is obvious
that ho and dh A @ are holomorphic, hence @ € Q%}f(log D) by definition. Thus the first
sequence is exact from the left. Evidently it is exact from the right too. In the same way, one
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can easily prove the exactness of the second sequence. The exactness from the left of the third
sequence follows from definition. In view of Lemma 1.6, it is clear that Im (-h) C TorsQF,
because for a non-zero divisor g one has the following chain of implications:
dh B q
gw = 7/\£+n = g(hw) =dh AN§+hn =0 = hw € Tors Q.

Now let take an element w € Tors QF, . By definition, there is a non-zero divisor g € Op ¢ such
that gw = 0. We will denote by ¢g and w their representatives in Ogo and Q%,O, respectively.
Then one has gw = dhANE+hn, € € Q%})l, 1 € Q%,- Since g is a non-zero divisor, the condition
b) of Lemma 1.6 is satisfied. This implies that w/h = @ € Qf ,(log D), that is, w € ITm (-h).

Remark 2.4 It is well-known [14] that Tors Qf, ; = 0, 0 < ¢ < ¢, where ¢ = codim (Sing D, D)
and Sing D is the singular locus of D. On the other side, any reduced hypersurface (or complete
intersection) D is normal if and only if ¢ > 2 by virtue of Serre’s criterion (“R; and Sy conditions
imply normality”). Hence, when D is normal then the exact sequence of Proposition 2.3 implies
the following isomorphisms
04 ~ O dh q—1
Gollog D) = Q% + W ANy, 1<g<c

It is not difficult to see that the support of TorsQ}, is contained in the singular locus
Sing D of the hypersurface D. Moreover, there is a system of generators of ©p-module Tors Q1
containing at least m — 1 elements.

Corollary 2.5 There are the following long exact sequences of Ogo-modules

0— QL+ %A Qg})l — Q% (log D) LN Qb — Qb o/ Tors Qf y — 0,
0 — dh A Q%}]l(log D) — QL oA Q%}f — Q% ,(log D) —, Tors Qf o — 0.

Proof. This is an immediate consequence of Proposition 2.3 and Claim 1.5.

Remark 2.6 The last sequence is very useful in computing the torsion modules in the case
when Q‘é’o(log D) is a free Ogp-module; it gives us an Ogg-free resolution of the torsion module.
Following P.Cartier |9] a hypersurface D C S is called Saito divisor or, more often, Saito free
divisor if for some ¢ > 1 and, consequently, for all ¢, the Og-module Q%(log D) is locally free.
For example, the discriminants of the minimal versal deformations of isolated hypersurface or
complete intersection singularities are Saito free divisors.

3 Poincaré residue

The following construction [15] is a direct generalization of the original Poinacaré definition of
the residue 1-form associated with any rational 2-form in C2.

Let w be a meromorphic differential m-form on an m-dimensional complex analytic manifold
S with a polar divisor D C S. Thus, locally we have a representation:

~ fe)dz AL ANdzy,
N h(z) ’




Beal'V
13 HAYYHBIE BEJIOMOCTN Ne13(68). Beimyck 17,/1 2009

where f and h are germs of holomorphic functions, and h is a local equation of D. By definition,
the Poincaré residue résp(w) is a meromorphic (m — 1)-form on D whose singularities are
contained in the singular locus Sing D C D. To define this form explicitly, let us note that at
each point x € D \ Sing D at least one of the derivatives of h does not vanish:

Oh

8z,~ Z=x

£ 0.

Then the Poincaré residue of w in a small neighbourhood of x is defined as follows:

F)dza AL Adz AL A d,
Oh(z)/0z;

résp(w) = (—1)""

D

It is not difficult to verify that this restriction depends neither on the index ¢ nor on the local
coordinates and on defining equations of D. Moreover, the Poincaré residue is holomorphic on
the complement S\ D. When D is smooth, one can take h(z) = z,,, and then, as usually,

, (f(z)dzl A...ANdzy,
résp

Zm

) = f(2)dz1 A ... Adzp_1,

that is, résp(w) is holomorphic on D. As a result one has the following sequence of sheaves

rés
0— QF — QD) — QP — 0,
where Q% (D) denotes the sheaf of meromorphic forms on S having a simple pole along the
divisor D. In particular, one concludes that the germ of every holomorphic (m — 1)-form on

the nonsingular divisor D is a Poincaré residue. It is obvious that this is true globally when the
first cohomology group vanishes: H'(S, Q%) = 0.

4 Leray residue-form

As remarked in Introduction De Rham and Leray considered d-closed C'*° regular differential
forms on S\ D having simple poles on D, where D is a submanifold of codimension 1 in a
smooth manifold S. In particular, they proved that locally for such a form there is the following
represenation:

(* w="netn,
h

where § and 7 are germs of regular differential forms on S. In fact, &, is globally and uniquely
determined; it is closed on D. If w is holomorphic on S\ D then the form §,, is holomorphic on
D. The form §|,, is called the Leray residue-form on D it is denoted by res[w]. It is not difficult
to see that the definition of the Leray residue-form generalizes the Ponacaré residue described
above.

Similarly to the construction from the end of the previous section, making use of local
representation (x), for any ¢ = 1,...,m one gets (see [23]) the exact sequence

0 — QF %Qq(D)EQq_lﬁo
S S D )
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which is equivalent, since the divisor D is a smooth hypersurface, to the sequence

res
0— QL — Q%logD) — Q45" — 0.

Below we show that a generalization of this sequence to the case when the divisor D has
arbitrary singularities requires more delicate considerations.

5 Saito residue map

In fact, Leray considered d-closed forms on S\ D in order to construct a natural homomorphism
of cohomology spaces HP(S \ D) — HP~'(D), and then the co-boundary homomorphisms of
homology groups H,_1(D) — H,(S\ D), the main ingredient of his famous residue-formula.

Furthermore, in 1972 J.-B. Poly [24] proved that the representation (%) are valid for any
semi-meromorphic differential form w as soon as w and dw have simple poles along a smooth
hypersurface D C S. By definition, a differential form w is called semi-meromorphic when
locally all its coefficients can be represented as quotient of smooth and holomorphic functions.
Hence, the Leray residue is also well determined for such forms without assumption on their
d-closedness.

Following Saito [27] we describe a natural generalization of the Leray residue for meromorphic
differential forms satisfying the above two conditions for a divisor D with arbitrary singularities,
that is, for logarithmic differential forms in the sense of Definition 1.1.

Let D C S be a hypersurface, and let the sheaf Mp be the Op-module of germs of
meromorphic functions on D.

Definition 5.1 (see [27], (2.2)) The (logarithmic) residue morphism is a homomorphism of
Os-modules
res. : Q%(log D) — Mp ®o, Q5

defined locally as follows: taking the representation of the basic Lemma 1.6, for any w €
Q% o(log D) we set

res.w = —-&.

Thus, the residue res. w is the germ of the meromorphic (¢—1)-form in the module Mp y®o,,
0%,

Claim 5.2 (|27], (2.5)) Let D C S be a hypersurface. Then for any q > 1 there exists the
following exact sequence of Og-modules

0 — Q% — Q%(log D) *= Mp ®0,, Q% .

Proof. Making use of the representation of logarithmic forms as in the definition of the symbol
res. above, one obtains
res.w = 0 & gw € Qg & w € Q.

This completes the proof.
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Remark 5.3 In particular, for ¢ = 1 one has
0 — Qy — Q4(log D) = Mp = M5,

where D is the normalization of D. Moreover (see [27], Lemma (2.8)), if 7: D — D is the
morphism of normalization, then the image Im (res. ) contains 7,(0) consisting of the so-called
weakly holomorphic function on D, that is, of meromorphic functions, whose preimage becomes
holomorphic on the normalization.

Remark 5.4 By this way we can consider the image of the logarithmic residue res. Q% (log D) as
an Op-module. Indeed, the definition of logarithmic forms implies that & - (Q% ,(log D)/Q% ) =
0. Hence, the multiplication by h- annihilates Im (res. ).

6 Regular meromorphic forms and Saito residue map

We are going to describe the image of the Saito residue map in terms of regular meromorphic
forms for logarithmic differential forms with poles along a divisor D C S with arbitrary
singularities together with a generalization of the exact sequences from Section 3 and Section 4.

Now we consider the sheaves of O p-modules wi,, ¢ > 0, called regular meromorphic differential
g-forms on the hypersurface D. So let X, dim X = n > 1, be the germ of an analytic subspace
of an m-dimensional complex manifold S, and let W% = Ext&_”(o x, 2¢) be the Grothendieck
dualizing module of X.

Definition 6.1 ([18], [8]) The sheaves w%, ¢ =0,1,...,n, of reqgular meromorphic differential
g-forms on X are defined as follows: w% consists of all meromorphic differential forms of order
q on X such that w Ay € w% for any n € Q7 or, equivalently, w% = Home, (Qy 7, w?).

Let us apply this Definition in the particular case when X = D is a hypersurface, that is,
n=m— 1.

Claim 6.2 Let D C U be a reduced hypersurface. Then res. Q‘éﬂ(log D) C W} for all ¢ =
0,1,...,m— 1.

Proof. Set dz = dz; A\ ... Adz,,. Then with preceding notations one has a natural isomorphism
wh = Op(dz/dh). That is, w}, = Home,(Qp %, Op(dz/dh)) for all ¢ = 0,1,...,n. Then

Corollary 1.7 implies that %-res. Q% (log D) ‘U C Q‘f:)_l }DQU forall2=1,...,m, or, equivalently,

dh A res. Q§(log D)|,, C QqD}DﬂU' This completes the proof.

Below we use an equivalent description of the regular meromorphic differential forms w?,, ¢ >
0, on the hypersurface D obtained by D.Barlet in a more general context (see [8], Lemma 4).
In fact, there is the following exact sequence of Op g-modules:

e Ndh
0 — why— Extés’o(opvo, Q%jrol) — Eth‘szo(OD,Oa Q‘éf’[f), qg>0,
where wi, , C j.j*Q} , and € is induced by the multiplication by the fundamental class of D in

S. Thus, €(v) corresponds to the Cech cocycle w/h such that w = v A dh.
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Theorem 6.3 ([2], §4) Let D C S be a reduced hypersurface. Then for any q > 1 there is the
following exact sequence

0— Q%' — Q% (log D) ™ Wl — 0.
In particular, w}, and res. Qq5+l(log D) are isomorphic Op-modules.

Proof. It is sufficient to verify the statement locally. In view of Claim 6.2 it remains to prove
that any element of w?, can be represented as the residue of a logarithmic g-form.
Let X.(h) be the ordinary Koszul complex associated with h, that is,

d d_y
0 — Os0e0 — Os0 — Opo — 0,

where K (h) = Ogpeg, Ko(h) = Osp and dy(eg) = h, d_1(1) = 1. Then we have the following
piece of the dual exact sequence

0
- — Homo, (Ko (h), Q) L Homo, (K1 (h), QL) —

— EXt%:)S’O(ODv(), Q%—E)l) — 0.

Hence, any element of Exty, (Opy, Q‘g[)l) can be represented as a Cech O-cochain (more
explicitly, a 0-cocycle) in the following way

v/h € Homo,, (% (h), Q&) = Oy (Q4),
where v € Q%J’Bl. Choose now an element v € Q%El such that

v
7 dh € Extg,,(Opy, L),

corresponds to the trivial element. That is, v A dh/h is defined by an element of

d°(Home, , (Ko(h), Q%J’Bz)). This means that v A dh = h - n for some form 7 € Q%J’Bz. The first
exact sequence of Proposition 2.3 implies that v € h - Q%Ji)l(log D). Set v = C7'(v/h). By
definition, C(#) corresponds to a Cech cocycle v/h such that v = & A dh (take v = ¥, w = v
in the above description of wf, with the help of multiplication by the fundamental class). This
yields C€(7) = v/h = v A dh/h, and res. (v/h) = D. Thus, for any element 7 € w%, there is a
preimage under the logarithmic residue map represented by v/h. This completes the proof.

~Y ~Y

Remark 6.4 In fact, the representation (%) implies directly that res. Q¢ (log D) = w} =
Op(dz/dh), in view of the formal decomposition dz/h = (dh/h) A (dz/dh). Further, it is not
difficult to verify that in the case of plane node of Example 2.1 there is natural isomorphisms
res. Q4 (log D) 2 7,(0p) = w, (cf. Remark 5.3). A similar result is also valid in a more general
situation (see [27], Theorem (2.9)).

Remark 6.5 It should also be underlined that there is a far reaching generalization of main
results of this section to the case of complete intersections. In papers [5] and [6] it was developed
the theory of multi-logarithmic differential forms and their residues with applications to the
general theory of multidimensional residue and residue currents on complex spaces.
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BBIYETHI JIOTAPUOMNYECKUX JTNOPPEPEHIIVAJIBHBIX ®OPM

A.T. AnekcanapoB
Nuctutyt npobnem ynpaenenus PAH,
yn. MpodpcotosHas, 65, Mockea, 117997, Poccus, e-mail: ag  aleksandrov@mail.ru

AwnHoTtamusi. B 3700 3aMeTKe mM3J1araeTcs JeMEeHTapHOe BBEIEHHE B TEOPHUIO JIOrapupMUIeCKUX
nuddepeHImaabHbIX (POPM U MX BBIYETOB. B 9acTHOCTH, pacCMaTpUBaIOTCA HEKOTOPHIE CBOMCTBA JIO-
rapudmMudecknx HopM, CBI3aHHBIE ¢ KPYyUYEHUEM TOJOMOPGHBIX MuddepeHnnaaoB Ha 0COObIX TUIIep-
ITOBEPXHOCTAX, KPATKO ODCY’KIAIOTCS MMOHATHUSI BblUeTa, JaHHBIE Ilyankape, Jleps u Canro, a 3aTem
[IPUBOIUTCS KPACHBOE OIUCAHUE PETYISPHBIX MEPOMOPGHBIX audOepeHInaloB B TEDMIHAX BBIUETOB
MepoMOP@HBIX anddepeHITnAILHBIX POPM, JTOTapU(MMUIECKIX BIOIb TUIIEPIIOBEPXHOCTH C TPONU3BOJIH-
HBIME OCOOEHHOCTSIMU.

Kuarouesbie cioBa: jorapudmudeckue auddepernnaababie (hopMbl, (bopMa-BbIYET, PEryIsIpHbIE
MepoMopdubie muddepeHnnaababie (GOPMBbI, KPyUueHne TOJOMOPGHBIX JuddHepeHInaios.
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Abstract. A wide class of complex dynamical systems can be described by evolutionary processes
given by a vector field with polynomial, analytic or smooth coefficients in phase space. Such systems
are investigated by perturbation analysis of the control and behavioral spaces together with associated
bifurcation sets and discriminants. Our approach is based essentially on the theory of logarithmic
differential forms, deformations theory and integrable connections associated with deformations. Such
a connection can be represented as a holonomic system of differential equations of Fuchsian type
whose coefficients have logarithmic poles along the bifurcation set or discriminant of a deformation. In
addition we also describe another interesting application, a new method for computing the topological
index of a complex vector field on hypersurfaces with arbitrary singularities.

Keywords: logarithmic differential forms, hypersurface singularity, torsion differentials, regular
meromorphic differential forms, residue-map, index of vector fields.

Introduction

Let us consider a complex dynamical system given by an evolutionary process described
by a vector field in phase space. A point of phase space defines the state of such system. The
vector at this point indicates the velocity of change of the state. The points where the vector
field vanishes are called equilibrium points, equilibrium positions or singularities of the vector
field.

It was shown by [9] that the typical phase portraits in the neighbourhood of an equilibrium
point of a generic system can be classified so that the corresponding list consists of the five
simple types: two stable (focus, node) and three unstable (saddle, focus, node).

Of course, generic systems or, in other words, systems which are in general position
correspond to real evolutionary processes and vice versa. Such a system always depends on
parameters that are never known exactly. A small generic change of parameters transforms a
non-generic system into a generic one. Thus, at the first sight, more complicated cases might
not be considered since they turn into combinations of the above types after a small generic
perturbation of the system.

However, if one is interested not in an individual system but in systems depending on
parameters the situation is quite different and more complex. Thus, let us consider the space
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of all systems divided into domains of generic systems. The dividing sets (hypersurfaces)
correspond to degenerate systems. Under a small change of the parameters a degenerate system
becomes non-degenerate. A one-parameter family of systems is presented by a curve which can
intersect transversely the boundary separating different domains of nondegenerate systems.

Hence, although for each fixed value of the parameter the system can be always transformed
by a small perturbation into a nondegenerate one, it is impossible to do this simultaneously
for all values of the parameter. In fact, every curve closed to the one considered intersects the
boundary of the separate hypersurface at a close enough value of the parameter.

Thus, if one studies not an individual system only but the whole family, the degenerate cases
are not removable. If the family depends on a one parameter than the simplest degeneracies
are unremovable one, those represented by boundaries of codimension one (that is, boundaries
given by one equation) in the space of all systems. The more complicated degenerate systems,
forming a set of codimension two in the space of all systems, may be gotten rid of by a small
perturbation of the one-parameter family.

If one analyzes two-parameter families then one needs not to consider degenerate systems
forming a set of codimension three and so on. Therefore at first it ought to analyze all generic
systems, then degeneracies of codimension one, then — two and so on (see [4]). Herewith one
must not restrict the study of degenerate systems to the picture at the moment of degeneracy,
but must also include a description of the reorganizations that take place when the parameter
passes through the degenerate value.

1 Control space and parameters

Let us consider a family of smooth functions
f:R"XR"— R,

describing a certain process happening in various copies of R"” governed by the function f and
affected by the point in R". The coordinate space R" is usually called the space of internal
variables while R" the space of external variables over which each copy sits. Such terminology
is suitable when the variables in R" label in physical space as in mechanics, optics, biology or
ecology, and so on.

For systems which one alters something and then to observe what happens the variables
in R" are called the control parameters while the variables in R™ are called the behavioral
parameters. Accordingly the space R" is referred to as the control space while R™ as the behavior
space. In the strictly mathematical context it natural to call the space R" the deformation
space while its points (or their coordinates) the parameters of a deformation. The number r is
correspondingly the external or control dimension, or the dimension of deformation.

Suppose that a submanifold M C R™ x R" is given by the equation

Dfu(x) =0,
where f,(z) = f(x,u), (x,u) € R* x R", and D is the usual differential of the image
fu:R"— R.

In other words, the manifold M is the set of all critical points of all the potentials f, in the
family f. Denote by & the restriction to M of the natural projection

7:R"xR" — R, m(x,u) = u.
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The critical set is identified with the subset € C M consisting of singular points of the image
&. In other words, € consists of points in which the map ¢ is singular, that is, the rank of the
derivative DE is less than r. The image of the critical set £(C) C R is called the bifurcation set
B.

It is not difficult to see, by computing DE, that C is the set of points (z,u) € M, at which
fu(z) has a degenerate critical point. It follows that B is the locus where the number and
nature of critical points change (that is, it happens jump changes in the state of a control
system); for by structural stability of Morse functions such changes can only occur by passing
through a degenerate critical point. In most applications (for instance, in problems of stability,
optimization, in studying caustics, wave fronts and so on) it is the bifurcation set that is the
most important, for it lies in the control space, hence is "observable and all delay convention
jumps occur in it.

Investigations show that a bifurcation set as variety possesses highly complicated topological,
analytic, algebraic and geometric structures. Herewith it appears that characteristics of such a
variety depend mainly on the structure of its subvariety of singularities, which, in turn, also can
possess singularities and so on. This observation directly leads to the notion of a stratification
variety, but in the most general context the study of bifurcation sets is reduced to the study of
stratified varieties (see [11]).

Remark that in virtue of the well-known splitting lemma a smooth function f can be
represented around a point, where it has corank k, in the form:

flry, .. ) £ag, £ . £a2

(perhaps with parameters in R” for f). Herewith the variables xy, ...,z are called essential
while xp1, ..., 7, — unessential. Certainly, such presentation is very far from unique. It should
be also noted that most singularities met by an r-dimensional family will even when not regular
or Morse, have codimension less than r. However, it is possible to write an r-parameter family
f, around a point, where it meets transversely a singularity of codimension v, in a way in which
only v control parameters appear. When one has done so, one may call the coordinates on R”"
that no longer appear, disconnected or dummy control parameters.

2 Deformations

In fact, general evolutionary processes can be described with the help of polynomial, analytical
or smooth functions and systems of equations as well as in a wider context by systems of
differential equations. In particular, using properties of associated bifurcation sets, the discri-
minants or, more generally, singular loci, basic properties of the corresponding systems are
investigated. One of the most efficient tools of the investigation is a general notion of integrable
connection associated naturally with any deformation of a system. Let us shortly discuss basic
ideas of the theory. Consider the system of polynomial or analytic equations

fl(zlazQa"'azm) =0
: (2.1)
fr(z1, 22, 2m) = 0

given in a neighbourhood U of the origin in C™. For simplicity we shall assume that k = m —1
and the set X of the solutions of our system in the neighbourhood U is one-dimensional. We
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shall say that a point, laying on the curve Xy, is nonsingular if the differential form df; A ... A
dfm—1 does not vanish on it. Otherwise, this point (and the curve) refers to as singular, or shortly
a singularity. Without loss of generality one can suppose that X, has the only singularity at
the origin {0} € X, C C™, that is, X is the germ of a reduced curve.

We shall assume now that the equations of the system (2.1) can be perturbed:

]ﬁ,(217/227 .. '7’Zﬂ1) = tl
: (2.2)
fm—l(zl7227“‘7zm) = tm—l

in such a manner that at each sufficiently small value of parameters t = (t1,...,t,_1) € C™!

in the chosen neighbourhood U the set X; of the solutions of the system (2.2) is also one-
dimensional. In other words, we shall consider the principal (flat) deformation of the curve
singularity X, given by the holomorphic map:

f: X — Cm™ 1 (2.3)

Let X be the intersection of a ball of a small radius € > 0 centered at the distinguished point
{0} € Xy with f~1(T), where T'C C™! is a punctured ball of a radius 0 < § < ¢ centered at
the origin 0 = f(0). Consider the natural restriction f: X — T of the mapping (2.3). Then
for some values of parameters ¢t € T the fibres X; are non-singular curve germs, for other ones
the corresponding fibres may have singular points called the critical points of map f.

3 Period integrals

Denote by C' C X the set of critical points of f and by D its image f(C) C T. Thus,
parameters corresponding to the fibres with singularities form the set D which refers to as
the discriminant set, or the discriminant of the principal deformation Xj. In many important
cases the discriminant is the zero-set of the only equation h(t,...,¢;) = 0, that is, D is a

hypersurface. Set
T"=T-D, X =X-C.

The restriction f: X’ — T" is a local trivial differentiable fibre bundle called the Milnor fibration
of f, that is, fibres X; = f~!(t)N X (of real dimension two) form a smooth fibre bundle over 7.
Fix a point ¢ty € T7". Then for each smooth closed path vy C X,, corresponding to the 1-cycle
in H'(X,,,C), it is possible to construct a family of 1-cycles v(t) C X;, t € T’, such that
v(to) = "o

If one takes a holomorphic differential form w = g(z)dz; A...Adz,, of the maximal degree in
a neighbourhood of the origin in C™, then using the identity df, A ... Adf,,_1 A = w one can
find a differential form ), which is the result of the division of w by df; A ... Adf,,—1. The form
1 is not determined uniquely, but up to the summands containing differentials of the functions
fiy--+, fm—1. It is easy to prove, that for all parameters ¢, rather close to zero, the integral

w
1= [y(t) V= /y(t) dfi Ao N dfm—t (3:1)

is determined correctly. Moreover, the integral I(¢) is an analytic function in the variable ¢.
Integrals of such type are called the period integrals.
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Replacing the differential form w with another, the integral (3.1), generally speaking, will
also change. However, it is possible to prove that the set of all such integrals contains a finite
number of the elements I;(¢),...,I,(t) so that any integral of the type (3.1) may be expressed
by means of these generators as a linear combination with holomorphic coefficients. In the
present context u is the Milnor number which is a topological invariant of the singularity Xj.

The same observation holds, if one fixes the form w and takes various families 7(¢). For
definiteness, we shall fix a family of vanishing cycles v(¢) and consider p independent period
integrals of the following type

w.
I(t :/ . ,
i(®) v AN dfs

where 1 < j < . The period integrals I;(t) can be differentiated with respect to the parameter
t. Between integrals and their derivatives there arose linear relations (syzygies) with polynomial
coefficients in ¢. These relations generate a system of differential equations for the integrals I;(¢)
expressed through a finite number of independent integrals.

4 Connection

In such a way a system of differential equations in the variable ¢ is associated with the germ
Xo; this system is defined correctly outside of the discriminant and refers to as Gauss-Manin
connection, or Gauss-Manin system, associated with the principal deformation of X,. The
main problem is to describe a system of differential equations defined on the whole space of
parameters, which is equivalent to the initial one outside of the discriminant (or, in other words,
to extend the initial system to the discriminant set). It is possible to show that the solution
of this problem depends mainly on properties of the discriminants as well as on properties of
fibres of the deformation.

It turns out that the connection in question can be represented in a quite elegant form. In
order to explain this idea we need the following notion. Let w be a meromorphic differential
form on S having poles along a reduced divisor D C S. Then w is called the logarithmic along
D differential form if and only if w and its total differential dw have poles along D at worst of
the first order. That is, hw as well as hdw are holomorphic differential forms on S where h is a
local equation of the hypersurface D C S.

The Og-module of logarithmic differential ¢g-forms is usually denoted by Q% (log D). Logarith-
mic differential forms have many remarkable analytic and algebraic properties (for example,
see [1]).

Following [10] denote by Derg(log D) the Og-module of logarithmic vector fields along D on
S. This module consists of germs of holomorphic vector fields 1 on S for which 7(h) belongs
to the principal ideal (h)Og. In particular, the vector field 7 is tangent to D at its smooth
points. The inner multiplication of vector fields and differential forms induces a natural pairing
of Og-modules

Derg(log D) x Q% (log D) — Q% (log D).

For ¢ = 1 this Og-bilinear mapping is a non-degenerate pairing so that Derg(log D) and
QL(log D) are Og-dual.
Let I be a free Og-module. Then a connection V on H with logarithmic poles along D C S
is a C-linear morphism
VX/SZ H— K ®Os le(log D) (41)
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satisfying the following conditions:

1) Vw+w') =V(w)+ V(),
2) V(fw)=wdf + fV(w), fe€0s.

Consider the case where Qg(log D) is a free Og-module of rank m. Obviously, in such a case
% (log D) = NP Qi(log D), p > 1. It is often said that the divisor D is free or, equivalently, D
is a Saito free divisor. The following characteristic property of such divisors was discovered by
[10].

Proposition 4.1 Suppose that there exist m logarithmic vector fields V', ..., V™ € Derg(log D)
such that for the (m x m)-matriz M whose entries are the coefficients of V', i =1,...,m, one
has det(M) = ch, where ¢ is a unit. Then V' ... V™ form a basis of the free Og-module
Ders(log D). In particular, Q%(log D) is a free Og-module with the dual basis wy, . . ., wn,.

For example, QL (log D) is free when D is the discriminant of the minimal versal deformation
of the system defined by a function with isolated singularity.

Now let D be a Saito free divisor. Then we can describe the logarithmic connection (4.1) on
QL (log D) itself. In other words, let us consider the case when H = Q}(log D):

V: Qi(log D) — Qg(log D) ®e, Q& (log D).

Let wy,...,w, be free generators of the module Qk(log D). Then the connection V can be
expressed in terms of Christoffel symbols in the following way:

m m
Vw; :ij@)wg, w? :Zngwk.
j=1 k=1
The connection V is called torsion free if
m m
dw; = wa ANwj = Z ngwk A wy,
j=1 kj=1
and V is called integrable if

dw! =37 WP Aw], thatis, dV=VAV,

where V =||w!|| is the coefficient matriz of the connection V. In particular, it means that the
composition

H L He Qs(log D) T He AN*Qg(log D)

1S zero.

5 Holonomic systems

It is possible to associate with any integrable and torsion free connection V on the module
QL(log D) a holonomic system of Fuchsian type in the following way.
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It is known (see [1]) that the multiplication by h induces the surjection
Qs(log D) —*, Tors QO — 0, (5.1)

whose kernel coincides with an Og-module

dh
Os=- + Q.
Here Q) is the module of holomorphic differential 1-forms on S generated by the differentials

dzy,...,dz, over Og,
Op = Qg /(h Q4 + Ogdh)

is the module of regular differential 1-forms on the divisor D, and Tors QL is the torsion
submodule of QL. The support of TorsQ} is contained in the singular locus Sing D of the
hypersurface D. The torsion Op-module Tors 2}, has a system of generators containing at least
m — 1 elements.

By definition, the generalized Fuchsian system is a holonomic system of linear differential
equations on S with meromorphic coefficients containing in Q% (log D):

dI=0QT, (5.2)

where I = "(Iy,...,I}) is a vector-column of unknown functions and the matrix differential

form {2 is defined as follows: ,

dh 9,
=, 4V
Oh+Z;’h

Here the differential 1-forms 9; € Qf, i = 1, ..., ¢, correspond via (5.1) to non-zero elements of
the torsion submodule Tors Q}, and A; € End(CF)®0g, i =0,1,...,¢, are coefficient matrices
with holomorphic entries such that the integrability condition d {2 = 2 A €2 holds.

It is not difficult to show that one can associate to any integrable and torsion free connection
V on the module Qk(log D) the generalized Fuchsian system of type (5.2) (see [3]). Moreover,
using the Christoffel symbols of such connection, it is possible to express the integrability
condition in terms of commuting relations of the coefficient matrices A;, i =1,...,¢.

Under some additional assumptions on entries of the coefficient matrices A; it is possible
to investigate the system of type (5.2) and to describe its explicit solutions. In fact, such
solutions are quite useful in describing the control of evolutionary processes, perturbations of
multidimensional systems, and many applications in dynamical systems, bifurcation theory, etc.
(for example, see [8], [4]).

6 Topological index

The index of a vector field is one of the very first concepts in topology and geometry of smooth
manifolds, and its properties underlie important results of the theory, including the Poincaré-
Hopf theorem, which states that the total index of a vector field on a closed smooth orientable
manifold is independent of the field and coincides with the Euler-Poincaré characteristic of the
manifold. When studying singular varieties such as bifurcation sets, discriminants, etc., it is
natural to ask whether there exists a similar invariant in a more general context. One possible
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generalization of this type, which originally arose in topology of foliations, turned out to be
well suited for use in the theory of singular varieties. In this section, we shortly describe a new
method for the calculation of the index of vector fields on a hypersurface on the basis of the
theory of logarithmic differential forms and vector fields. The main idea of our approach is to
describe the index in terms of meromorphic differential forms defined on the ambient variety and
having logarithmic poles along the hypersurface (see [2]). We shall see that the systematic use
of the theory of logarithmic forms permits one not only to simplify the calculations dramatically
but also to clarify the meaning of the basic constructions underlying many papers on the subject
(for example, see [6]).

6.1 Regular differential forms

Let S be a complex manifold of dimension m =n + 1, n > 1, and let Qf, be the Op-module of
germs of regular (Kéhler) differentials of order g on D, so that

Qf, =94, /(hQL, +dhAQLS), ¢>0,

where x € S. By analogy with smooth case, elements of Q%vx are usually called germs of regular
holomorphic forms on D. Now let Der(D) = Homg,, (2}, Op) be the sheaf of germs of regular
vector fields on D and let us consider an element V' € Der(D). By V € Der(S) we denote a
holomorphic vector field on S such that V|p = V. Then the interior multiplication (contraction)
wy: Qf — ngl of vector fields and differential forms defines the structure of a complex on

g, since L% = 0. The contraction ¢y induces a homomorphism ¢y : Qf, — Q‘f:)_l of Op-modules
and also the structure of a complex on €2},. The corresponding ¢y -homology sheaves and groups
are denoted by H. (2}, tv) and H. (2}, ,, v ), respectively.

6.2 Homological index

If the vector field V has an isolated singularity at a point x € D, then t,-homology groups of
the complex QF, , are finite dimensional vector spaces, so that the Euler characteristic

n+1

X( .D,maLV) :Z(_l)ldlmHl( z),gcaLV)>

=0

of the complex of regular differentials is well-defined. It is called the homological index of the
vector field V' at the point € D and denoted by Indpem p.(V) (see [7]). At nonsingular
points of D the homological index coincides with the topological index, or, equivalently, with
the Poincaré-Hopf local index.

6.3 Logarithmic index

Let us consider a vector field V € Derg(log D). The interior multiplication ¢y defines the
structure of a complex on Q%(log D).

Lemma 6.1 If all singularities of the vector field V are isolated, then ty-homology groups of
the complex Q%(log D) are finite dimensional vector spaces.
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Proof. Assume that S = C™, m = n + 1, and the point zp = 0 € D C S is an isolated
singularity of the field V, so that V(xy) = 0. Then V(z) # 0 at each point x in a sufficiently
small punctured neighbourhood of z(. In a suitable neighbourhood of = there exists a coordinate
system (¢, 21,...,2,) such that V = 9/0t. Since V(h) C (h)Ogy, it follows that D = T x Dy,

rn

where T' is a small disc in the variable ¢ and Dy is a hypersurface in C". It is easy to show that
Qi1 o(log D) = (& o(log Do) @ 05! o(log Do) A dt) ®c Oc-

Indeed, for germs of holomorphic forms one has the isomorphism 29, 0= (Q%O 0 @Q%g o /\dt) Rc
Oc,o which can readily be obtained by considering of the canonical projections of the analytic
set T'x Dy onto the first and second factors and the definition of QF, ;. The desired isomorphism
for germs of logarithmic forms can be obtained by a similar argument with the use of the exact

sequence

0— Qb+ + 4 A Q‘énﬂl 0 = Qi1 o(log D) N Qf, o — QF o/ Tors Qf, ; — 0, which follows
from the exact sequence expressing the torsion subsheaves Tors Q% in terms of logarithmic
differential forms (see [2]).

Further, in the g-th piece of the complex (€% ,(log D), ty) one has

Ker (La/at) = Im (08/815) = (Qqcn’o(log DO) D (0)) Xc OQQ.

That is, the corresponding homology groups vanish for all q. The same conclusion readily follows
for the point 2o € S\ D. Consequently the ¢y-homology groups of the complex Q%(log D) may
be non-trivial only at singular points of the field. Since the sheaves of logarithmic forms as well
as their cohomology are coherent, we arrive at the statement of the Lemma.

Thus if the vector field V has isolated singularities, then the Euler characteristic

n+1

X(Q&x(log D), Lv) = Z(—l)idim H; (Q&x(log D), Lv)

1=0

of the complex of logarithmic differential forms is well defined for any point x € S. It is called
the logarithmic index of the field V at the point z and denoted by Indies p (V). It follows from
the preceding that Indjeg p (V) = 0 whenever V(z) # 0.

6.4 The index of vector fields on hypersurfaces

To study the ty-homology of the complex €27,, one can use an approach based on a representation
of regular holomorphic differential forms on the hypersurface D via meromorphic forms with
logarithmic poles along D (see [2]). Recall [loc. cite| that for all ¢ =0,1,...,n+ 1, there exist
exact sequences

Adh

0— Q& /h-Q%  (log D) =5 Q% /h- Q% — QL —0

of Og,-modules, where Adh is the homomorphism of exterior multiplication. Hence one obtains
the exact sequence

0 — (Q4,/h0%, (log D), ) [~1] % (g, /00, 09) — (U aev) — 0 (6.1)
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of complexes. Indeed, the fact that the multiplication by Adh induces a morphism of complexes
follows from the identity

w(w) Adh = tp(w A dh) + (1) 'w A V(h),

since the second summand from the right-hand side vanishes in the quotient complex % /h2%
in view of the condition V(h) € (h)Og.. Now note that from the exact sequence

0 — (%, 1v) — (s 1v) — (/4 1v) — 0

of complexes it follows that x(Q%,/hQ%,,ty) = 0. Thus from the exact sequence (6.1) one
obtains

Indhom,D,x(V) = _X((Qé,m/hgé,m(log D)> LV) [_1]) = X(Qé,m/hgg,x(log D)? LV)‘

Proposition 6.2 Suppose that x € D is an isolated singularity of a vector field V € Der(log D),
the germsv; € Og, are determined by the expansionV = . v;0/0z;, and J,V = (v1,...,Um)0g4.
Then

Il’ldhom’D’x(V) = dim OS@/JQDV — Il’ldlogD’x(V).

Let us consider the case when D is a Saito free divisor. Then the complex (ng(log D), Lv)
is naturally isomorphic to the Koszul complex K.((oq, e Q); Os,x) on the generators e¢; =
wi, © = 1,...,m, where the germs «; € Og, are determined as coefficients of the expansion
V =>",a;V" of V in the basis of logarithmic vector fields. In this case one readily obtains the
following identity:

Indiog p (V) = X(K.((al, e ) OS@)).

Corollary 6.3 Let Jiogp.V = (ai,...,0y,)0s,. Suppose that the coefficients (o, ..., )
form a regular Og ,-sequence. Then

Indhomp@(\?) = dim OS@/JIV — dim Og,x/JlogD@’V.

6.5 Normal hypersurfaces

Let Z = Sing D be the singular locus of a reduced divisor D, and let ¢ = codim (Z, D) be the
codimension of Z in D. It is well-known (see [1]) that ¢ = 1 for Saito free divisors, that is, in a
sense, the singularities of D form the maximal possible subset of the divisor. For ¢ > 2, Serre’s
criterion implies that the hypersurface D is a normal variety. For further analysis of this case
we use the following reformulation due to [10] of the notion of logarithmic forms.

Lemma 6.4 The germ w of a meromorphic differential q-form at a point x € S with poles
along D is the germ of a logarithmic form (that is, w € Q% (log D)) if and only if when there
exists a holomorphic function germ g € Og, a holomorphic (¢ — 1)-form germ & € Qqs;l and a
(1) dmeDN{ze M: g(z) =0} <n-—1,

holomorphic q-form germ n € QL . such that .
phic q-f g g Se (zz)gw:%/\£+n.
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Let o: QF ,(log D) — QF, be the homomorphism of multiplication by &, and let w € QF
(log D). Then there exists an element g € Og, in Lemma 6.4 such that ghw € hQ?g,ijdh/\Q%’_xl,
that is, ghw = 0 in Q%,x‘ Since the germ g defines a zero non-divisor in Op ,, in particular, this
means that hw € Tors QF, , where the torsion submodule of the sheaf of regular g-differentials is
denoted by Tors QF, . Thus, Im () € Tors QF, , (actually one has the equality). If Tors QF, , = 0,
then the germ ¢ in (iz) can only be an invertible element; consequently,

dh
0, (log D) = O, + = A O (6.2)

In fact, this isomorphism can be obtained without the preceding argument if one directly makes
use of the exact sequence for the torsion submodules Tors Q%  (for example, see [1]).

Theorem 6.5 Let D be a normal hypersurface. Then

Mdpom,p.0(V) = dim O,/ (h, J,V) + St (—1)idim H;(Q3, ,, ),

where ¢ = 2[121] + 1, the square brackets denote the integer part of rational numbers, and the
sum is zero by convention if the lower limit is greater than the upper limait.

Proof. It is well-known that Tors Q% = 0 if 0 < ¢ < ¢. Hence, together with the isomorphism
(6.2), this means that Q%  /hQ (log D) = QF, , for all such g. Therefore, it follows from the
exact sequence (6.1) that

Hi(QD, wv) = Hi 1 (Q5[-1],1v) = Hi (5, tv)

forall : =3,...,c+ 1. In particular, in this range the dimensions of the ¢y-homology groups of
the complex th in the two series Hy; and H;_q coincide. Further, one can readily see that the
dimensions of groups H; and H, also coincide (see [2]), whence the desirable formula follows.
The integer part in the lower limit of the sum is needed in order to distinguish between the
cases of even and odd codimension.

Corollary 6.6 Suppose that a point x € D 1is an isolated singularity of the hypersurface D as
well as of a vector field V € Der(log D), V(h) = ¢h and ¢ € Og,. Then

Indyom po(V) = dim Og,/(h, J,V) + edim Ann ¢, (h)/(¢) B,

where e = —1 if n is even and € = 0 otherwise, and B, is the local ring Og 4/ J,V.

7 Conclusion

In many applications (say, in the theory of dynamical systems, bifurcation theory, in economic,
biology, chemistry, etc.) a stable equilibrium state describes the established conditions in the
corresponding real system (see [8], [5]). When it merges with an unstable equilibrium state the
system must jump to a completely different state: as the parameter is changed the equilibrium
condition in the neighbourhood considered suddenly disappears. The described results allow
one to investigate in detail jumps of this kind with the use of invariants of bifurcation sets and
discriminants associated with deformations of a complex system.
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JIOTAPUOMUYECKUE JTNOPEPEHIIMAJIBHBIE ®OPMBbI 11
KOMIIVIEKCHBIE /INMHAMNYECKNE CUCTEMbBI

A.T. Anekcanapos’, A.A. Kacrpo, mi.?), B.A. I'pyaman’

DWnctutyT npobnem ynpasnexusi PAH,

yn. Mpodcotosnas, 65, Mockea, 117997, Poccus, e-mail: ag  aleksandrov@mail.ru
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®epepancHblii yHUBepcuTeT WTaTa bauns,
yHusepcuteT, bauns, 40170-110, Bpazunus, e-mail: armando@impa.br

Annorarust. [Ilupoknit Ki1ace CIOKHBIX IMHAMIIECKUX CUCTEM MOXKET OBITH OMUCAH KAK IBOJTIOTH-
OHHBII MIPOIIECC, 38 JAHHBII BEKTOPHBIM ITOJIEM C HOJUHOMUAJIBHBIME, AaHAJUTHICCKAMA WA TVIATKIMI
ko3 durmeaTaM B a30BOM IPOCTPAHCTBE. TaKue CUCTEMBI UCCJIEIYIOTCS METOJIOM BO3MYIICHUN U
AHAJIM30M [IPOCTPAHCTB YIIPABJIEHUs U TIOBEJIEHUsI BMECTE C COOTBETCTBYIONIUM OU(ypPKAITMOHHBIM MHO-
JKECTBOM U JUCKPUMUHAHTOM. ONMHUCHIBAETCS TOAXOM K M3YUEHUIO TAKUX CUCTEM, OCHOBAHHBLIN HA Me-
Tojax Teopuu Jiorapudmudecknx auddepennnaababix GopM, Teopun AedopMaInii 1 HHTETPUPYEMbIX
CBSI3HOCTEN, aCCONMMUPOBAHHBIX ¢ JAeopmariusiMu. Takas CBA3HOCTb MOXKET OBITh IMPEICTABJIEHA B BU-
Jie TOJIOHOMHO# cucTeMbl ndhepeHInaabHbIX ypaBHeHnit (DYKCOBOro THIIA, KOI(DDUIMEHTH KOTOPOi
00J1a/1a10T JIorapu(OMUIECCKUME TIOJIFOCAMHU BJIOJIb OU(YPKAIIMOHHOI'O MHOXKECTBA, WIN TUCKPUMIHAHTA
nedopmarim. Kpatko obcyKmaercss n Ipyroe WHTEPECHOE TMPUIOKEHNE — HOBBIH METOJ] BHITUC/ICHUST
TOTIOJIOTHIECKOTO MHEKCA KOMILIEKCHOTO BEKTOPHOTO ITOJIsT HA TUIEPIOBEPXHOCTH C MTPOU3BOJIHHBIMA
0CODEHHOCTSIMH.

KiroueBbie ciioBa: Jsiorapudmutieckue auddepeHiuaibabie (hOpMbI, THIIEPIOBEPXHOCTH C 0CO-
OeHHOCTSIMU, KpyueHue auddepeHnuaos, peryaspHabie MepoMopdHbe muddepeHuaibabie (hOPMBI,
dopMa-BBIUET, HHIEKC BEKTOPHOTO TOJIS.
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Abstract. In this note new expansions of (3) in continued fractions are obtained.
Keywords: zeta-function, {(3), expansion in continued fractions.

Foreword

This article is a brief account of my talk given at Moscow session of China-Russia Symposium
"Complex Analysis and its applications"on October 24, 20009.

Preliminaries

Given two sequences of variables
{a,})2) and {b,},2 (1.1)

we can produce the following sequences of fractions:

ay
Rolor)

ay
R,_1(b1,as, by, ..., a,, b,)

for a positive integer v. They are called the fraction R, by the finite continued fraction generated
by sequences (1.1). Below we use the following standard notation:

Ro(bo) = bo, Ri(bo,ar,b1) = by + (1.2)

R,,(bo,al, bl, ceey Ay bl,) = b() +

(1.3)

a| a,|
R,=by+-—+ ...+ — 1.4
0+ 0, +oF b, (1.4)
If all elements of sequences (1.1) are complex numbers (but not variables), all fractions (1.4)
are well defined for these complex numbers and there exists the limit
lim R, = «,

V—00
then it is said that o has expansion in continued fraction

a | a,|
a=by+-—+...+7—+.. 1.5
0 ‘bl ‘b,, ( )

Partially supported by the Russian Foundation of Basic Research (RFBR) and by the National Natural
Science Foundation of China (NSFC) in the framework of the bilateral project "Complex Analysis and its
applications" (project No. 08-01-92208)
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They are called the finite continued fractions (1.4) as convergents of the continued fraction
(1.5). Let us consider further the following difference equation

Lyl — bzx—l—lxu — Qp41Ty—1 = 07 (16)

with nonnegative v. Let {P,}/>°; and {Q,}/2° ; be solutions of this equation with the following
initial values

P_1=1,0Q-1=0, Py(bo) = bo, Qo(bo) = 1. (1.7)

Then easy induction shows that P, and (), are numerator and denominator of finite continuous
fraction (1.4). Since we have the equality

PV+1 . PI/ PI/—l
( QV+1 ) B bV—H < QI/ ) _'_CLV—H < Qu—l ) ’ (18>

it follows that

and therefore

Vﬁl

ag

Pu—l-l_i: 1\ _k=1

QV+1 QV ( 1) QVQV'Fl‘ (19)

It follows from Apéry results that the number a = ((3) has the expansion in the continued
fraction (1.5) with
bo = 0, a; = 6,61 = 5, Ay = —Vﬁ, b,,_,.l = (110)

34v° 4+ 51v° 4+ 27v + 5,

where v € N. Yu.V. Nesterenko (1996) has offered the following expansion of the number ((3)
in continuous fraction: o -
1 1
=1+—+—-+=+—.. 1.11

with a, and b, given by the following equalities

bo=1,a1=1,b =ay=0by =4. (1.12)
bipsr = 2k + 2, agpyr = k(k+ 1), bygyo = (1.13)
2k + 4, agpro = (K + 1)(k +2)
for k € N,
barss = 2k + 3, agpys = (k+ 1), bypya = (1.14)
2k 4 2, s = (k+2)?
for k € Ng.

Let P} and @) be numerator and denominator of Nesterenko fractions. It is easy to prove
that numerator and denominator of Nesterenko fractions with subscript 4v — 2 are equal to the
numerator and denominator of Apéry fraction with subscript v, respectively.
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2 The main result

The goal of present work is to give some supplements to Apéry’s and Nesterenko’s results. Our
research is based on the results about difference systems connected with Mejer’s functions; I
gave a talk about these results on conference in memory of professor N.M.Korobov.

Thus, we have found the following expansions of the number ((3) in continuous fractions:
Theorem A. The number ((3) has the following two expansions in continued fraction: the first
one is

oy ai] ay™|
2<(3):bo +|bg—*1)+m+|b£—*1)+m’ (2.1)

with b, and a, given by the equalities
b =3, a™ = 81,

at = —(v =134 —4v - 3)°

forv e [2,400) NN,
bY = 4(681° — 450* + 1202 — 1)

for v e N, and the second is

20(3) = b\ + 0 + ..+ me + .., (2.2)

with b, and a, given by the equalities
b =2, a™ =42,

al? = —(v =1 —dv = 3) (v + 1)° = ) (v — 1)* — (v —2)%)

forv e [2,400) NN,
b0 = 2(10205 — 680 + 2102 — 3),

for v e N.

As a result we specify also a way to obtain many other expansions of the number ((3) in
continued fractions.

The next three sections contain a sketch of proof of Theorem A.

3 Auxiliary functions
Suppose that z satisfies to the following conditions:
|z| > 1, -37/2 < arg(z) < 7/2,log(z) = In(|z]) + i arg(=), (3.1)

let 0 be the differentiation z%, and let a be a nonnegative integer. My first auxiliary function
is a finite sum

i = e = S0 (V) (V) 52)

v
k=0
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Let us consider the rational function given by the equality
[1(t =)
R(a,t,v) = Zla : (3.3)
(t+7)
7=0
My second and fourth auxiliary function are sums of the following series
“+o00
L+ a)l?
fao(z,v) = ZZ tT(R(a,t, v))?, (3.4)
t=1 )
. 3 L+ a)? o,
fa,4(z7 V) = _Zz T at(R ) (Oé,t, V)' (35)
t=1 ’
Finally my third auxiliary function is defined as follows:
fa 3(z v) = (log (z))f;z(z, v) + f;,0,4(27 v). (3.6)

We consider also the functions f,x(z,v), k& = 1,2, 3, 4, related with previous functions by
means of the equalities

v!?

N Ok

(Z, V)f;,k(zv V)v (37)

where k =1, 2, 3, 4, v € Ny. Making use of the expansion of the following rational function

(v +a)?
()2

into partial fractions relatively to ¢, and some simple transformations we obtain the following
equality

(=t)"(R(at,v))?

0" faari(zv) — j(log (2))0" f1o(2,v) = (3.8)

2
(Z(l —j+if)B (% V)Li+j(1/z)> — B%s (=),

i=1

where d =22, j=0,1,7=0,1,2,3, |2/ >1,a €N, s € Z,

S(1/2) = Z 1/(z" (3.9)

are polylogarithms and ﬁa 0, Z(z; v), 62(6)3 +;(z;v), are polynomials of z with rational coefficients.

It is clear that
Ly(1)=¢(s), s>1. (3.10)
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4 Passing to a difference system

In fact, the auxiliary functions fJ,(z,v) are generalized hypergeometric functions, so called
Mejer’s functions. They satisfy the following differential equation

Do(z,1,0) for(2,v) =0, (4.1)
where v € [0, +00) NZ, k € Ry = {1, 2, 3},
Dy(z,v,6) = 2(0 —v —a)*(0 + v+ 1)* = o (4.2)

is differential operator, and ¢ := z%. It follows from general properties of the Mejer’s functions
that
(5 +v+ 1)2foz,k(z> V) = (5 —v—1- a)2foz,k(z> v+ 1)7 (43)

where v € [0, +00) NZ, k € Ry. Since,

4
(1=1/2) "' Dalz,1,6) = 6* = basd*,
k=1
we can obtain by standard considerations the differential system

0Xak(zv) = Ba(z;v) Xak (2 1), (4.4)

where k =1, 2, 3, |2| > 1, v € Ny,

0 1 0 0
0 0 1
Balziv) = 0 0 0 1 ’
bai1(2z;V) baa(z;v) bas(zv) baa(z;v)
f;,k(za V)
. _ 5fa*,k(zv V)
Xedl5) =1 gt e |
53f:¢,k(z> V)
where k =1, 2, 3, |2| > 1. In view of (4.2),
D.(z,—v —a—1,0) = Dy(z,v,9). (4.5)
Therefore we can put
Xa,k(z; —v—1-= Oé) - Xa,k(z; V)? (46)

where v € Ny, and then consider X, ;(z; ) on
veM™=((—o0,—1—a]Ul0,+00) NZ,

Finally, we use the equations (4.1), (4.3) and (4.4) to obtain the following difference system.
Theorem 1. The column X, (z;v) satisfies to the equation

1/5Xa,k(z; v—1)=A (z;v) Xor(z;v), (4.7)
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forve M = (—o0,—1—a]U[l,+00))NZ, k=1, 2, 3, |z| > 1; moreover, the matriz AL(z;v)
has the following property:

V(v +a)’ By = Al (2 —v — ) A, (2;v), (4.8)

where Ey is the 4 x 4 unit matriz, z € C, v € C.
Although the matrix A%(z;v) is a 4 X 4-matrix, its elements are huge polynomials in
Q[z, v, a]. For example, if we put

1+«

p=p.v)=v+a)v+1), r=1,(v)=v+ 7

(4.9)
then the the matrix A (z;v) has on intersection of its first row and its first column the element
aZ,l,l(Za v) = ag,l,l(zv v) + Tag,m(za v),

where
ag,l,l(% v) = %(—1 + 20— a® — 5+ 3o — 5p? — ap®)+ (4.10)
2
2
%u(—?ﬁ + 5da — 2902 + 5a% — 564 + 20ap),

(=4 +12a — 130® + 6a° — a*)+

apyi(zv) =1 —a+3u+ it (4.11)
2(4 — 8a + 5a% — a® + 24y — 22au + 5o’ + 16p2),

So, the equality (4.8) was very helpful for us, when we have checked our calculations.

5 Reducing the obtained system to the difference system
of the second order in the case a = 1.

This is key point in our research, it leads to desirable results. In the case @ = 1 the situation
simplifies since the above system is reducible and our problem can be reduced to the consideration
of a system of the second order. To be more precise, in this case

r=nw)=v+1,u=ml) = (v+1)> (5.1)
Du(z0,0) = (1= 1/2)8" + 3 rapa(0)6", (5.2)
k=0
where
n) =mw) =@+1)" =74 ) =0,
r3(v) = —2u1 (V) = —2(v + 1)%, 74(v) = 0,
Let us consider the row
R(v) = (ri(v), ra(v), rv), ra(v)). (5.3)

Let E4 be the 4 x 4-unit matrix, and let C'(v) be the result of replacement of 1-th row of the
matrix £, by the row in (5.3). Let further D(v) be the adjoint matrix to the matrix C'(v). Then

Cw)D() = 2Ey, C(—v — 2) = C(v), D(—v —2) = D(v), (5.4)
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Set
AT (Lv) =C(v — 1)Aj(2,v)D(v). (5.5)
and
Y11 k(Z7 V)
Yie(zv) = ziizgz: Z; =C(v) X k(2 v), (5.6)
Yrak(z;v)

where k =1, 2, 3, |2| > 1, v € M = ((—00,—2] U [0,400)) N Z. Then
Yig(z;—v —2) = Yii(zv), (5.7)

(W) Yir(zv — 1) = A7 (2, 0)Yig(ziv), (5.8)

where k = 0,1,k =1,2,3, |2]| > 1,v € M{ = ((—00,—2] U [1,400)) N Z. Replacing in the
equality (5.8)
ve M= ((—oo,—2]U[l,+00))NZ

by
V= —U — 2 - M{k* == ((—OO, _3] U [07 _'_OO)) N Z’

and taking in account (5.7) we obtain the equality
(V)2 +2)Yik(zv + 1) = A7 (2, —v — 2)Yi k(2 v), (5.9)

where k =1, 2, 3, |2| > 1, v € M{* = ((—00, —3] U [0, +00)) N Z. The matrix A{*(z,v) can be
represented in the form

Al (zv) = AT (Liv) + (2 = DV (v), (5.10)

where the matrix V;**(v) does not depend from z. We will tend z € (1,400) to 1. Therefore we
must study the behavior of our auxiliary functions, when tend z € (1,400) to 1. Then

T | .
]
tu:l
—~
~
|
<o
N—
(Y]

t"R(1,t,v)* = ="+ °0(1) (t — +00) (5.11)
(t+4)?
7=0
(;(R%) (1,t,v) =t"°0(1) (t — +00) (5.12)
for r =0, 1, 23, 4. Therefore
(z—=1)0"f12(z,v) = (5.13)

> 2 (=) (R(, t,v))* = (2 = HO(1) In(1 — 1/2) — 0 (z — 1 40)

forr=0, 1, 2, 3,
(z — 1)54f1,2(z, v) = (5.14)

> (=) R(ent,v)? = 14 (2 = 1DO(1)In(1 — 1/2) — 1 (z — 1 40)
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(z = 1)0" fralz,v) = (5.15)

- Zz_t(—t)’" (%(R%) (1,t,v) =(z—1)0(1) =0 (z = 1+0)
forr=0, 1, 2, 3, 4 and
(z—=1)" f13(z,v) = (z — 1)(log (2))0" fr2(z, v)+ (5.16)

(z =11 fra(z,v) + (2 = 1)0" fra(z,v) = 0 (z — 1 +0)
forr =0, 1, 2, 3, 4. Further we have

yrjr1k(zv) = 8 fup(z,v), (5.17)

where j =1,2, 3k=1, 2,3, |z] > 1, v € Ny. Further we have
yak(l,v) = ZEIS_OZ/LLk(Z; v) = (5.18)

— lim (1 —=1/2)6*f1x(2,v) = (k—1)(k — 3), where k =1, 2, 3, ,v € Ny,

z—140

(v+1)4WP 0 0 0
S O e O 639
af4,1(13 V) a’{f4’2(1; V) a’{f4,3(1; V) (v+ 1)4’/5
with
QIT2,1(1§ v) = (5.20)
—72(1 —1)(27 = 1)(67% — 47 + 1),
aty,(Lv) =7°(1 = 1)(7% + 2(27 — 1)%), (5.21)
atys(Liv) = =374 (r — 1)(21 — 1)°, (5.22)
ars,(Liv) = (5.23)
(r — 1227 —1)(47r* =37+ 1),
ayso(l;v) = (5.24)
275 (1 = 1)*(21 — 1)(7* — (7t = 1)3),
ayra(Lv) = (5.25)
™ —1)%((r — 1)) +2(27 — 1)%),
a’f,*4,1(1§ v) = (5.26)
(1 — 1)°(21 — 1)(2r° — 27 + 1),
ayyo(l;v) = (5.27)

(1 — 1)3(21 — 1)(47% — 57 + 3).
aiys(Lv) = (5.28)
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—7 (7 = 1)*(21 — 1)(67° — 87 + 3).

If we consider the second and third equations in the system of equations (5.8) with £ =1, 3
and tend z € (1,400) to 1, then, in view of (5.18) and (5.19), we obtain equations

(V)8 fron(ly — 1) = (5.29)

<Z 10,41 y+1 (L; V)((ijlvoﬁ)(l’y)) ’

where i = 1,2, k=1, 3 and v € M; = ((—o0, —2] U [1,4+00)) N Z.

Let us take
F={F@)}n2 o and G ={G)}2 (5.30)
such that
F(-v=2)=F(v), G(-v=2) =G(v), F(v) €Q, G(v) €Q (5.31)
for v € Z. Then in view of (5.7),
Yra(z —v = 2) = yrg(z,v) = (5.32)
fork=0,1,k=1,3 and v € M = ((—o0, —2] U [0,400)) N Z. In view of (5.29)
2 .
( g (1 V)(5]f1,o,k)(1aV)> = (5.33)
j=1

25, kkk

() vV ypa(z v —1),
where k =1, 3 and v € M} = ((—o0, —2] U [1, +00)) N Z. Replacing in (5.33) v € M| by

V= —U — 2 - M{k* == ((—OO, _3] U [07 _'_OO)) N Z’

and taking in account the equality (5.7) we obtain the equalities

2

( apijr1—n(l; =V = 2)( jﬂ{fl,o,k)(L”)) = (5.34)

j=1
—m(v)* (v + 1)°yFa(z v + 1),

where k=1, 3 and v € M;* = ((—o0, —=3] U [0, 4+00)) N Z. Set

a*F*E +1(1 -V = 2)
@ )= FOERZH+6mG-1) | (5.35)

ok sk

aFGj—i—l(l;V_ 1)

where j = 1,2, v € M = ((—o0, 3] U[1l,4+00)) N Z,

Wia) = (@, () @8,0) ) = (5.36)
apga(l;—v —2) apgs(li—v—2)
Fv) G(v) , Y (v) =

ag (1 v) g sl v)
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( (0 fr08)(1,v) )
(0% frox)(L,v) )7
Ypar(v) = (5.37)
—(v)* (v + 2)°yF gz, —v — 2)
y;TG(Z’ V) )
(V) vPyia(z,v — 1)
where k =1, 3, v € M{** = ((—o0, =3] U [1,4+00)) N Z. In view of (5.33) and (5.34)
Yian(w) = Wea(W)Y™ (v). (5.38)
Let further
WFra 3,1(7/)
Wras(v) = | wres2V) | = [Wrei(v), Wrea(v)) (5.39)
wFG,3,3(V)
be the vector product of W% (v) and wWra(v), and let
wres(v) = (Uresv))
be the row conjugate to the column wg g 3(v). Then for scalar products
(s (). Wi 5 ()
we have the equalities
Wy (1) T ()
(T 3(0). W4 (v) = 0.
where Kk =0, 1, 7 =1, 2 and
ve M™ =((—oo0,-3]U][l,+00)) N Z.
Therefore
’LDF7G73(I/)WF7(;(I/) = ( 00 ) s (540)
where v € M{** = ((—o0, =3] U [1, +00)) N Z. In view of (5.29), (5.34) and (5.40),
w(k)rasW)Yegy (v) = (5.41)

W(K)is()W(K)i(¥)Yy™ (v) = 0,

where k =1, 3 and v € M;™* = ((—o0, —3] U [1, +00)) N Z.

Thus, for given F' and G we obtain a difference equation of the second order, which leads
to desirable results. First, taking F'(v) = 1 and G(v) = 0 for all v € Z, we then obtain the first
expansion described in Theorem A. Further, taking F'(v) = 0 and G(v) = 1 for all v € Z, we
then obtain the second expansion from Theorem A.

Acknowledgement. I express my thanks to A.G.Aleksandrov for his support.
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UNIQUENESS THEOREMS OF MEROMORPHIC FUNCTIONS
IN SEVERAL COMPLEX VARIABLES

Pei-Chu Hu", Chung-Chun Yang?

1) Department of Mathematics, Shandong University,
Jinan 250100, Shandong, P. R. China e-mail: pchu®@sdu.edu.cn
2) Department of Mathematics, The Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong e-mail: chungchun.yang@gmail.com

Abstract. In the survey, results on the existence, growth, uniqueness, and value distribution of
meromorphic (or entire) solutions of homogeneous linear partial differential equations of the second
order with polynomial coefficients that are similar or different from that of meromorphic solutions of
linear ordinary differential equations have been obtained. We have characterized those entire solutions
of a special partial differential equation that relate to Bessel functions and prove in general that
meromorphic solutions that grow much faster than the coefficient have zero Nevanlinna’s deficiency for
each non-zero complex value. It’s well-know result that if a nonconstant meromorphic function f on C
and its I-th derivative f() have no zeros for some [ > 2, then f is of the form f(z) = exp(Az + B) or
f(z) = (Az + B)™" for some constants A, B. We have extended this result to meromorphic functions
of several variables, by first extending the classic Tumura-Clunie theorem for meromorphic functions
of one complex variable to that of meromorphic functions of several complex variables by utilizing
Nevanlinna theory.

Keywords: meromorphic functions, homogeneous linear partial differential equation, holomorphic
coefficients, Nevanlinna’s value distribution theory.

Analytic properties or characterizations of meromorphic (or entire) solutions of some partial
differential equations (or system) of the first order have been exhibited clearly by several authors
(cf. 2], [13], [18], [19]). In this survey, we introduce a few results on meromorphic solutions
of homogeneous linear partial differential equations of the second order in two independent
complex variables

82u+2 82u+ 82u+ 8u+ du N 0. (11)
a a a a agu = :
Yo T Toto: T o2 ot o

where a;, = ay(t, z) are holomorphic functions for (¢,2) € ¥, where X is a region on C2. Basic
idea comes from S. N. Bernstein [3], H. Lewy [17], I. G. Petrovskii|20]. For more detail, see [15].
To prove these results, we used some methods in [5], [7], [11], [14], [21], [23] and [26].

First of all, we examine the following special differential equation:

0%u 82u ou ou
207U 07U Ou OU
Pog =gt — e+ U =0, (1.2)

The work of Chung-Chun Yang was partially supported by Natural Science Foundation of China and second
author was partially supported by a UGC Grant of Hong Kong: Project 604106.
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Theorem 1.1 The differential equation (1.2) has an entire solution f(t,z) on C? if and only
if f1s an entire function expressed by the series

f(t,z) = Zn!cnjn(t)z" (1.3)
n=0
such that
lim sup |e,|/™ = 0, (1.4)

where J,(t) is the first kind of Bessel’s function of order n. Moreover, the order ord(f) of the
entire function f satisfies

p < ord(f) < max{1, p},
where
2logn

— limsup —28 " __
P 11I/Ln_>solip ].Og ‘Cn|_1/n

(1.5)

By definition, the order of f is defined by
log tlog "M (r, f)

ord(f) = lim sup

P00 logr ’
where ;
logz, iftx>1;
. _ ’ —_
log 5”_{0, if ¢ < 1,
and

M(r,f) = max |f(t,2)]

[t|<r || <r

G. Valiron [25] showed that each transcendental entire solution of a homogeneous linear ordinary
differential equation with polynomial coefficients is of finite positive order. However, Theorem 1.1
shows that Valiron’s theorem is not true for general partial differential equations. Here we
exhibit another example that the following equation

Pu  0*u  Ou

tQW sz tig =0
has an entire solution exp(te®) of infinite order.
If 0 < A =ord(f) < oo, we define the type of f by
log "M (r, f)

typ(f) = limsup -
For the type of entire solutions of the equation (1.2), we have an analogue of Lindel6f-Pringsheim
theorem, its proof is essentially the same as that of the determining of the type for Taylor series
of entire functions of one complex variable.

Theorem 1.2 If f(t,z) is an entire solution of (1.2) defined by (1.3) and (1.4) such that
1 < A =ord(f) < oo, then the type o = typ(f) satisfies

edo = 27M2lim sup 2n/c, |V ™.

n—oo



Beal'V
47 HAVYHBIE BEJIOMOCTU Ne13(68). Beimyek 17/1 2009

Brosch [4] proved that if two nonconstant meromorphic functions f and g on C share three
distinct values ¢y, ¢9, c3 counting multiplicities, and if f is a solution of the differential equation

(%)n = ]Zi;bj(z)wj = P(z,w)

such that by, by, - -, ba, (b, # 0) are small functions of f (grow slower than f), furthermore if
P(z,¢;) #£0 for i = 1,2, 3, then f = g. To state a generalization of Brosch’s result to PDE, we
abbreviate

ou J*u 0%u
Uy = E’ utzzﬂu utt:ﬁa

and so on, and set

Du = aouf + 2a1uu, + a2u§,
Lu = AoUst + 2a1utz + AUy, + A3Us + A4l .

We make the following assumption:

(A) All coefficients a; in (1.1) are polynomials and when ag = 0 there are no nonconstant
polynomials u satisfying the system
Du =0,
Lu=0.

For technical reason, here we study only meromorphic functions of finite orders. The order
of a meromorphic function of several variables may be defined by using its Nevanlinna’s
characteristic function (cf. [12], [22]).

Theorem 1.3 Assume that the assumption (A) holds. Let f(t, z) be a nonconstant meromorphic
solution of (1.1) such that ord(f) < oo and let g be a nonconstant meromorphic function of
finite order on C%. If f and g share 0, 1, co counting multiplicity, one of the following five cases
18 occurred:

(a) g=f;

(b) 9f =1;

(c) as=0,9f=f+gy;

(d) as =0, and there exist a constant b & {0,1} and a polynomial B such that

1

b
fega @ =g =)

(e) ag #0, f?9*> =3fg—f—g.
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When ag # 0, the case (b) may happen. For example, we consider the differential equation
0*u N 0*u  Ou
otz 022 Ot

which has an entire solution of order 1

u=0, (1.6)

f(t, z) = e't=.

Let’s compare f with the following entire function of order 1

gt,z) =e 7%,
Obviously, f and g share 0, 1, —1, oo counting multiplicity, but g # f, gf = 1. Now the
differential equation

Lu+ Du+ag=0

has a nonconstant polynomial solution
u(t,z) =t+ z.

The condition (A) is meaningful. For example, Theorem 1.1 shows that the differential
equation (1.2) has a lot of entire solutions of finite orders. Obviously, the condition (A) associated
to the differential equation (2) holds, and hence we can obtain the fact:

Corollary 1.4 Let f(t,z) be a nonconstant meromorphic solution of (1.2) such that ord(f) <
oo and let g be a nonconstant meromorphic function of finite order on C2. If f and g share 0,
1, oo counting multiplicity, then we have either g = f or gf =1 or f2¢> =3fg— f —g.

The case (b) in Theorem 1.3 may really happen for ag = 0. For example, we consider the
differential equation

0? 0
gu_9_y, (1.7)
o2 0z
which has an entire solution f(¢,z) = e'** of order 1 such that the assumption (A) holds
obviously. The entire solution f and the function g = e™*~* share 0, 1, oo counting multiplicity,

and satisfy gf = 1, that is, the case (b) in Theorem 1.3 happens for the case ag = 0.

For a real number z, let [z] denote the maximal integer < z. We give the following result
that is an analogue of Anastassiadis’s theorem [1| on uniqueness of entire functions of one
variable.

Theorem 1.5 Let f(t,z) and g(t,z) be transcendental entire solutions of (1.2) such that
ord(f) < o0, ord(g) < oo, and
a2jf 82jg
o0t 0z (0,0) = Oti0z7

(070)7 j = 07 17 - 4,

where
q = max{[ord(f)], [ord(g)]}.

If there exists a complex number a with (a, f(0,0)) # (0,0) such that f and g share a counting
multiplicity, then we have f = g.
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Theorem 1.3 shows that when ag = 0, global solutions of the equation (1.1) can be quite
complicated, however, when ag # 0, these solutions have normal properties. Next result also
supports this view. Theorem 1.6 extends a theorem (cf. Theorem 5.8 of [10]) on meromorphic
solutions of linear ordinary differential equations.

Theorem 1.6 Assume that all ay in (1.1) are entire functions on C* which grow slower than
a meromorphic solution of equations (1.1) on C%. If ag # 0, then the deficiency of the solution
for each non-zero complex number is zero.

For example, the telegraph equation

0? 0? 0
U2 o M =0

o 02 ot

has entire solutions
u(t,z) = e {f(z + ct) + g(z — ct)},

where f and g are entire functions on C. If o # 0, Theorem 1.6 shows that the deficiency of a
non-constant u(t, z) for each non-zero complex number a is zero, which means that the equation

f(z+ct) +g(z—ct) —ae* =0
has zeros.

Let Z, denote the set of non-negative integers. For z = (z1, ..., z;,) € C™, i = (i1, ..., 1) €
27, we write

=5 k=1..m; O =0, =000 |i| =i1 4 +ipn.
We have interesting in the following problem:

Conjecture 1.7 If f is a meromorphic function in C™ such that f and O'f have no zeros for
some 1 = (ly,....l) € Z7 with I, > 2 (1 < k < m) and such that the set of poles of f is
algebraic, then there exists a partition

{1,,m}:[0U11UU[k

such that I N I; =0 (i # j), and

k
f(Zl, ey Zm) = exXp (Z AZZZ + BO) H Z Azzz + Bj s
7=1

iely icl;
where A;, Bj are constants with A; # 0, and n; are positive integers.

This is open if m > 1. For detail discussion, see [16]. When m = 1, the conclusion of
Conjecture 1.7 was obtained by Tumura [24], and Hayman [8] gave a proof for the case | =
I, = 2. Later, as a correction of the gap in Tumura’s proof, Clunie [6] gave a valid proof of the
assertion for any [ > 1.
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Let f be a meromorphic function in C™ which we shall assume to be not constant. We shall
be concerned largely with meromorphic functions h which are polynomials in f and the partial
derivatives of f with coefficients a of the form

I T(r,a) = o(T(r, f)), (1.8)

where T'(r, f) is the Nevanlinna’s characteristic function of f, and where the symbol “||"means
that the relation holds outside a set of r of finite linear measure. Such functions h will be called
differential polynomials in f. To study Conjecture 1.7, the following result will play a crucial
role.

Theorem 1.8 Suppose that f is meromorphic and not constant in C™, that

g:fn+Pn—1(f)7 (19)

where P,_1(f) is a differential polynomial of degree at most n — 1 in f, and that

| NG+ 8 (72 ) =T )

where N(r, f) is the Nevanlinna’s valence function of f for poles. Then

a n

n
where a is a meromorphic function of the form (1.8) in C™ determined by the terms of degree
n—11m P,_1(f) and by g.

When m = 1, Theorem 1.8 is due to Hayman ([|9], Theorem 3.9, p.69). By using Theorem 1.8,
we can give a proof of Conjecture 1.7, under a condition on non-vanishing of the partial
derivatives of order > 1 that differs from the one posed in the conjecture, as follows:

Theorem 1.9 If f is a meromorphic function in C™ such that f, 0illf, . 82;;]‘ have no zeros
for some l, > 2 (1 < k < m) and such that the set of poles of f is algebraic, then there exists
a partition

{1,,m}:]0U[1UU[k

such that I, N I; =0 (i # j), and

—n;

k
f(z1, ..y 2m) = exp (Z Az + Bo> H ZAizi + B; ,

i€lp Jj=1 \i€l;
where A;, Bj are constants with A; # 0, and n; are positive integers.
In particular, if f is entire, the function f in Theorem 1.9 has only an exponential form
f(z1y s 2m) = exp (A1z1+ -+ + Az + Bo) -

We shall utilize the methods developed in [9], [12] and [13] and generalized Clunie lemma to
prove the main results.
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Abstract. In the paper, we study the uniqueness and the shared fixed-points of meromorphic
functions and prove two main theorems which improve the results of Fang and Fang and Qiu.
Keywords: meromorphic functions, fixed-points, holomorphic coefficients, shared polynomials.

1 Introduction and main results

Schwick [8] was the first to draw a connection between values shared by functions in ¥ (and
their derivatives) and the normality of the family F. Specifically, he showed that if there exist
three distinct complex numbers ay, ag, as such that f and f’ share a; (j =1,2,3) IM in D for
each f € F, then F is normal in D.

In 2006, Wang and Yi [9]proved a uniqueness theorem for entire functions that share a
polynomial with their derivatives, as follows

Theorem A. Let f be a nonconstant entire function, let Q(z) be a polynomial of degree
q > 1, and let k > q be an integer. If f and f' share Q(z) CM, and if f*®(2) — Q(z) = 0
whenever f(z) — Q(z) =0, then f = f'.

According to Bloch Vs principle, numerous normality criteria have been obtained by starting
from Picard type theorems. On the other hand, by Nevanlinna’s famous five point theorem and
Montel’s theorem, it is interesting to establish normality criteria by using conditions known
from a sharing values theorem.

In this note, we obtain the following normal family related to Theorem A.

Theorem 1.1 Let F be a family of holomorphic functions in a domain D; let Q(z) be a
polynomial of degree ¢ > 1, and let k > 2q + 1 be an integer. If, for each f € F , we have

f(2) =Q(2) = f'(2) = Q(2) = f¥ = Q(2),
then F is normal in D.

In order to prove theorem 1.1, we need the following results, which are interesting in their own
rights.

Proposition 1. Let F be a family of holomorphic functions in a domain D; let h(z) be a
polynomial of degree q > 1; let k > q be an integer. If, for each f € F, we have h(z) = 0 =
f(2) =0 and f(z) =0 = f'(2) = h(z) = |f*®(2)] < M, where M is a positive number, then
F is normal in D.

The author was supported by the NSF of China (10771121), the NSF of Guangdong Province
(9452902001003278) and Excellent Young Fund of Department of Education of Guangdong (LYMO08097).
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Proposition 2. Let F be a family of holomorphic functions in a domain D; let Q(z) be
a polynomial of degree q > 1; let k > 2q + 1 be an integer. If, for each f € F, we have
Q(2) = Q'(2) =0= f(2) #0 and f(2) =0 = f'(2) = Q(2) = Q'(2) = fP(2) = Q(2), then T

1s normal in D.

2 Some Lemmas

Lemma 2.1 [9] Let F be a family of functions meromorphic in a domain D, all of whose
zeros have multiplicity at least k, and suppose that there exists A > 1 such that |f®(z)] < A
whenever f(z) =0, if F is not normal at zy € D, then for each 0 < a < k there exist,

(a) points z, € D, z, — z;

(b) functions f, € F, and

(c) positive number p, — 0 such that p,* fn(zn + pnC) = gu(C) — g(C) locally uniformly,
where g is a nonconstant meromorphic function in C, all of whose zeros have multiplicity at
least k, such that g*(¢) < ¢*(0) = kA+1. In particular, if F is a family of holomorphic functions,
then p(g) < 1.

Lemma 2.2 [2] Let g be a nonconstant entire function with p(g) < 1; let k > 2 be a positive
integer; and let a be a nonzero finite value. If g(2) = 0 = ¢'(2) = a, and ¢'(2) = a = g¥(z) = 0,
then g(z) = a(z — z0), where zy is a constant.

Lemma 2.3 [2/ Let F be a family of holomorphic functions in a domain D; let k > 2 be a
positive integer; and let « be a function holomorphic in D, such that a(z) # 0 for z € D. If for
every f € F, f(2) =0 = f(2) = a(2) and f'(z) = a(z) = |f*(2)| < h, where h is a positive
number, then F is normal in D.

In order to prove theorem 1.1, we need some definitions.
Let A ={z: |z| <o}, let Q(2) be a polynomial of degree ¢ > 1 and R(z) = Q(2) —Q'(z) =
2mP(z), P(z) # 0, when z € A. Define that Q,(z) = Q(z + a), where a is a constant, then

Ra(2) = Qa(2) — Q4 (2) = (2 + )" Fu(2).

Define \, = £ /_fR“ and \,(0) # 0, where f is holomorphic function in A. Thus we get [’ =

Aof + Ra = A1 f + ta1. By mathematic induction we get f*) = A\ f + ptar (k> q+2), where

fag = Ra{NT 4 Poo[ N} + RANT2+ Ps[} 4+ o + RO 4 p oA} (21)

and Py_o[Aa], - - ., Pr_(g+2)[Aa] are differential polynomial in A\, with degree at most k—2,...,k—
(q + 2) respectively. Let pqr(0) — Q4(0) # 0. Define ,(0) # 0 where
Ra (k) — Qa !
Yo = Raf™ = Quf” (2.2)
f
Define ¢,(0) # 0 where
fa= —[1+ () Qu+ QIR — —QuR (23)
‘ Yo' Y e T T '
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Lemma 2.4 Let f(z) be analytic in the disc A = {z : |z| < ro}; let a be a complex number
such that |a| < ro; let k > q+ 2 be a positive integer. If Qu, Ra, Ao, flak; Yo and @, are defined
as above; Zf .f(O) 7é O: |f/ - Ra|z:0 7& O; Ra =0= f(Z) 7& 0 and

f(z2)=0= f'(2) =R, = f¥(2) = Q,

then
T(r.£) < LD[r. f] + Mlog | oo+ log )] (2.4
where
VR PR L N NN AR L
LDIr, f] = Mi[m(r, f)+m( " ) +m(r, 7 ) +m(r, f/—Ra)+m( ’f’—Ra)]
(k+1) / )\ )\g@—Q)
+ Mym(r, ﬁ) + My[m(r, %) + m(r, )\—Z) + ...+ m(r, N )]

+ Ms[m(r, Ry) +m(r, R)) + ... +m(r, R?) + m(r, Q,) +m(r, Q) +log 2],

and My, My, M3 are positive numbers.

Lemma 2.5 [1] Let U(r) be a nonnegative, increasing function on an interval [Ry, Ro](0 <
Ry < Ry < +00); let a,b be two positive constants satisfying b > (a + 2)?; and let

U(r) <a{log+U(p)+logpir}+b
whenever Ry < r < p < Ry. Then, for Ry <r < Ry,
R
2 19

U(r) < 2alog jr—
, —

Lemma 2.6 [1] Let g(z) be a transcendental entire function. Then

lim sup | z|g*(2) = +oo.

|z[—00

3 Proof of Proposition 1

Let zg € D. If h(z) # 0, by Lemma 2.3, F is normal at zy. Now suppose that h(zg) = 0. Without
loss of generality, we may assume that zp = 0, A = {z : |2] <} € D and h(z) = 2"b(z), where
b(0) =1 and b(z) #0 (z € A). We shall prove that F is normal at z = 0.

Let F1 = {F = zim : f € F}. We know that if F is normal at z = 0, then F is normal at
z = 0. Thus we only need to prove J; is normal at z = 0.

For each f € F, from h(z) =0 = f(z) =0, we get z = 0 is a zero of f. Thus we have

f(2) = anz" + ap1 2"+ (an #0) (n > 1),

and
f'(z) = h(z) =na, 2" '+ (n+ Dag 12" + ... — "+ ..) .
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By the assumption f(z) =0 = f'(z) = h(2), we get

1
f — mzm+1 _'_ CLm+2Zm+2 + (31)

Hence we get F; is a family of holomorphic functions in A. Next we prove V F' = zim e I,
F=0=|F'| < M, where M = max.ca |b(2)] > 1.

Suppose that F(ag) = 0, then f(ag) = 0.

If ag # 0, we get F'(ap) = ]Na(—g?) — % = b(ap).

If ap = 0, we get F'(ag) = blag) — ;75 =1— ;05 = m%rl Thus we get F'=0= |F'| < M.
Now we prove that 7 is normal at z = 0. Suppose on the contrary that J; is not normal

at z = 0, then by Lemma 2.1, we can find 2, — 0, p, — 0 and f,, € F such that

_1fn(zn + pnC)

— 9(¢) (3.2)

locally uniformly on C, where g is a nonconstant entire function such that g*(¢) < ¢*(0) = M+1.
In particular p(g) < 1. Without loss of generality, we assume that lim 2 = ¢ € C. In the

n—oo Fn

following we consider two cases.
Case 1: ¢ = co. Then z, # 0 and £2* — 0 as n — oo. Set h,(¢) = p;lw. Then by

(3.2), we get '

—1fa(zn £ pu)

ha(C) = py, o & )™

(1+ ’;—:om — 9(0). (3.3)

We claim:
gO)=0=¢({)=1land ¢'({)=1= g(k)(o —0.

Suppose that g(¢p) = 0, then by Hurwitz’s Theorem, there exist (,, ¢, — (o, such that (for n
sufficiently large)

halG) = p Lt pnn) g,

m
ZTL

Thus fn(zn + pnCn) = 07 by the assumption we have fyll(zn + pngn) = (Zn + pngn)mb(zn + pngn)a
then we derive that

n

gl(Co) = lim

n—oo

= lim bz, + paG)(1+ 2—"@)’“ — b(0) = 1.

Thus g(¢) = 0 = ¢’(¢) = 1. Next we prove ¢'(¢) = 1 = g*)(¢) = 0. By (3.3) we know

o+ aQ)b(zn + paC) 2P (L 220)b(z + pul)  *

We suppose that ¢'((y) = 1, obviously ¢’ # 1, for otherwise g*#(0) < ¢'(0) = 1 < M + 1,
which is a contradiction. Hence by Hurwitz’s Theorem, there exist (,, ¢, — (o, such that (for
n sufficiently large)

(2n + PnCn)™b(2n + pPnGn)

=1

Y



Feng Lii, Jun-Feng Xu. Normal family and the ... 58

Thus f] (2, + pnn) = h(zn + pna), by the assumption we get |f£k)(zn + puCn)| < M. Then

k 1
g «w—th" )z + pua)| < lim [E2_[3T = 0.

n n

Thus we prove the Claim. By Lemma 2.2, we get g = ¢ — b, where b is a constant. Thus we
have ¢*(0) <1 < M + 1, which is a contradiction.
Case 2: ¢ # 0o. We set
fapn()

oL
Pt

Gn(C) = (3-4)

Then
fn(zn+pn(c Zn))
Gon & pulC — 22))7

We know that z = 0 is zero of f,, with multiplicity m + 1, then we get 0 is a zero of G({) with
multiplicity m + 1 and

Gu(Q) = py! (" = g(¢ = e)¢" = G(C)

Gt (0) = lim. G (0) = m! (3.5)

n—

If G'(¢) = ¢™, we derive that G(¢) = —5¢™*!. Hence we obtain g(¢) = —L5(¢ +¢). It
follows that ¢g*(0) < mLH < M +1, a contradiction. Thus G'(¢) # (™. Using the same argument
as in the proof of Case 1, we get

G(() =0 G'(¢) =¢" and G'(¢) =

Suppose G(() is a polynomial. Let

G(C) = byt + by 1CT 4+ o+ b1 (" (s #0). (3.6)
From G(¢) =0« G'(¢) = (™, we get
G(¢) = C(G'(¢) = ¢MA. (3.7)

Thus, by (3.6) and (3.7) we have G({) = b,(? — (m+1 Cm“ (g >m+2)or G(¢) = AC™H,

and from (3.5), we get G(¢) = —27¢™*'. Then G’(C) ¢, a contradiction.

In the following we assume that G(() is a transcendental entire function.

Let us consider the family 7' = {t, : t,(¢) = %} we see that ¢, is a entire function

satisfying o
tn(O) <M, k=m+1,
W) =0e 60 =" {t 28 o ket

By Lemma 2.3, we have 7" is normal on Dy = {( : (1/2)™ < |(] < 2™}, thus there exists a M
satisfying
om (m42)n |1 omyn
(0 - AZITCE@ YO
(2m)2m e + (G (2m)7C)

Set r(z) = (,’;(il, then r(z) is a transcendental entire function. We know that for each z € C,
there exists a integer n such that z = (2™)"(, where (1/2)™ < || < 2™. We can get

1
g (3.8)

m—+1

|2l () < (@) +
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From Lemma 2.6, we get
lim sup | z|r(2) = 400,

|z[—00

which contradicts with (3.8).
Thus, we prove that F; is normal at z = 0. Hence J is normal at z = 0.

4 Proof of Proposition 2

Let zp € D. If [Q(2) — Q'(2)]|:=2 # 0, by Lemma 2.3, F is normal at z;. Now suppose that
Q(2) — Q'(2)]|:=2 = 0. Without loss of generality, we may assume that zo =0, A = {z: |2] <
0} € D and R(2) = Q(2) — Q'(2) = 2™ P(z), where P(2) #0 (z € A). We shall prove that F
is normal at z = 0.

Suppose on the contrary that F is not normal at z = 0, then by Lemma 2.1, we can find
Zn — 0, p, — 0 and f,, € F such that

9n(C) = fu(zn + pnC) — 9(C) (4.1)

locally uniformly on C', where g is a nonconstant entire function. Without loss of generality, we
assume that s
lim = =ceC.

n—0o0 pn

First, we shall prove that ¢({) is a transcendental entire function. In fact, we only need to prove
that g(¢) # 0. The argument given in the proof of Proposition 1 shows that

9(¢)=0=g¢'(¢) =0,

thus ¢ only has multiple zeros. Suppose ( is a zero of g(¢) with multiplicity s(> 2), then
g (¢o) # 0. Thus there exists a positive number J, such that

9(¢) #0, g'(Q) #0, ¢*(¢) #0 (4.2)

on D§={(:0<|{— (| <d}. By (4.1) and Rouché theorem, there exist ¢, ;(j =1,2,...,s) on
Dsso = {¢ 1 |¢ — ¢o| < 6/2} such that

9n(Cn) = fu(Zn + PuCny) =0 (1 =1,2,...,9).

It follows from R(z) = 0 = f(2) # 0 and f(2) = 0 = f'(2) = R(z) that f, (2, + pnCnj) =
R(zy + pnCnj) # 0. Thus

g;(gn,j) = /)nfr/L(Zn + pncn,j) = an(zn + pngn,j) # 0(] =12,.., S)v

so each (, ; is a simple zero of ¢,(¢), that is ¢, ; # (ni(1 < i # j < s). On the other hand

lim_g,,(Gnj) = 1im pp R(zn + pnGn;) =0

n—oo

From (4.2), we get
nh—>n;lo CTL,J = g(] (.] = 1727 ) S)'
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Noting that (4.2) and g;,(¢) — pnR(2, + pn() has s zeros ¢, ;(j = 1,2, ...,s) in Ds/o, then (j is
a zero of ¢’(¢) of multiplicity s, and thus ¢ (¢y) = 0. This is a contradiction. Hence g(¢) # 0
and ¢(C) is a transcendental entire function.

Now we consider five cases.

Case 1: There exist infinitely many {n;} such that

o, Gny + P, Q) = R(zn, + o, Q).

It follows that g;, () = pn;R(zn; + pn;C). Let j — oo, we deduce that ¢'(¢) = 0, which
contradicts that ¢ is transcendental.

RID-QJ)

Case 2: There exist infinitely many {n;} such that ¥, (2., +pn,¢) = 0, where ¢, = T

Thus we have

*) ,
(20, + P, Q)" P20, + Py € )gn;k(}g) = Q(zn, + pnjC)gnpj(_o

and K (k—(m+1))
9(Q)  Qza, + pu, Q)i

9, () Pz, + pu, Q) (2 + O™

pnj

Noting that k& > 2¢+1 > 2m + 1, let j — oo, we deduce that ¢i*)(¢) = 0, which contradicts
that ¢ is transcendental.
Case 3: There exist infinitely many {n;} such that ¢, (2., + pn;¢) = 0, where

1

Q-+ Lor- Lor

Qpn:_[l_l'( b b

and 1, is defined as above. Let

T(¢) = ol ™ V(S 4 )™ Py (2, + p, gl () + (2 + )™ Pz, + puy Q)9 V(C)

— o " Q 20y + 0, )0, (C) = PV Q 20, + pny Qg ()
Then
—I(Q)Q(zn, + pn,C)

(4 O™ P (e, + OB — Qo + 0, Oy ™ V0, (0
95(Q) _ QU + pu, Oy "V Pizn, + 0 )

+ (Z 4 )Pz, + po, ()T =
o V) T A OPG im0

+ Q/(an + pnjc)pflj_m

where R/(z) = 2" Pi(z).
Thus, let j — oo, we get g*)(¢) = 0, which contradicts that ¢ is transcendental.
Case 4: There exist infinitely many {n;} such that pr,; (z2n; + pn,¢) = Q(2n; + pn,;¢) where

frn = ROET 4 P oA+ RO 24 P} + oo+ RO g o D

and \, = ﬂ‘f;R. Thus, let j — oo, we get

9 =m0 1 A p(oyTym 1 B ()] =
(g) [(c+¢) P(O)(g) + R"™(0)] = 0.
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Hence ¢ =0 or (c+ C)mP(O)(%)m + R (0) = 0, which contradicts that g is a transcendental
entire function.

Case 5: There exist finitely many {n;} such that f;, (z,; + pn;Q) = R(2n; + pn; )5 ¥, (20, +
anC) = 07 SOTL]‘ (an _'_ pn]g> = 0 a’nd ,uknj (ZTL]‘ _'_ pn]g) = Q(ZTL]‘ + pnjg)

For all n we may suppose that f1, (2, + pu.C) % R(zn, + pn,C)s Uny(on, + pusC) # 0.
Pny (Zn; + P, C) Z 0 and pign, (20, + pn,C) Z Q2n; + pn;C)-

Take ¢y € C such that ¢ (¢y) # 0 (j = 0,1, ..., k). In case ¢ # oo, choose (y to satisfy the
additional conditions that (y # —c and

9'(o)
9(Co)
Noting that & > 2¢ + 1 > 2m + 1, this facts imply that K,, =— 0 as n — oo, so that

log K,, — —00 as n — .
Forn=1,2,3,..., put

(c+ Go)™ P(0)( )™+ RI™(0) # 0.

hn(z) = fn(zn + pnCO + Z)

Since z, + pnCo — 0 as n — oo, it follows that (for sufficiently large n) h, is defined and
holomorphic on |z| < 3. Denote
p = Zn + pngO

Then, for sufficiently large n, h,(0) # 0, h,,(0) — R,,(0) # 0. By the assumption we get
ha(2) = 0= ,(2) = Ra, = h{P(2) = Qu,.
Let a = a, and f(z) = h,(z) in Lemma 2.4, then we get
hn(=an) = fn(0) # 0,¢4,(0) = ¥n(an) # 0, ©a,(0) = @nlan) # 0,
[Hawk = Qanllz=0 = [1kn — Q|:=a, # 0,

thus h,(z) satisfies the assumption of Lemma 2.4.
Now applying Lemma 2.4 with rq = %, and noting that the last three terms in (2.4) are
bounded for 0 < r < 1/3, we obtain that, for sufficiently large n and 0 < r < 1/3,

h, B! B! hi — R hit)
T(’f’, hn) S Ml[m(r, h—Z) + m(r, h,—n) + m(r7 h—/n) + m(r, hZ I RZ:) + m(r, h'/n . Ran )]
pUH1) / N \k—2)
+ Mym(r, M) + Ma[m(r, 1/13:) + m(r, )\Z;) + ... +m(r, z\';n )].

We can obtain, for 0 <r <7 < 1/3,

1 1
T(r, hy) < Cp{l + log ™= +log T—— + log +T(T, hy)
r T—T
+ 10g +T(7—7 h’/n) + 10g 'HT(T7 wan) + log +T(T, )\an)}-

(4.3)

Observe that T'(7,h!) = m(7, hl,) < m(r, hy,) + m(r, %), hence for 1/4 < r < p < 1/3 with
T = (r + p)/2. From the above we obtain

1
T(r,h,) < Cp(1+ log+ﬁ +log *T(p, hy)).
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By Lemma 2.5 it then follows that 7'(1/4,h,) < A, where A is a constant independent of
n. Thus f,(z) is uniformly bounded for sufficiently large n and |z| < 1/8. However, from
P21 (20 + puCo) = 92(Co) — 9" (o) # 0 we see that f(z) cannot bounded in |z| < 1/8. This is a
contradiction, so the proof is complete.

5 Proof of Theorem 1.1

Let §={g=f—Q: feTF}and R(z) = Q(z) — Q(z). Obviously, G is normal in D if and

only if ¥ is normal in D. It follows from our assumption that, for any g € G, we have

Let zg € D. Now we prove that G is normal at zg. Let {g,} C G be a sequence.

If R(zg) # 0, then there exists a positive number 0 such that As = {z € D : |z—z| < d} C D
and R(z) # 0 in As. Then by Lemma 2.3, {g,} is normal at z,.

If R(zp) = 0, then there exists a positive number 0 such that Ay = {z € D : |z—z| < d} C D
and R(z) # 0in As\{20}. Suppose {g,} has a subsequence say, without loss of generality, itself,
such that g,(z9) = 0, then {g,} is normal at z; by Proposition 1. Suppose g¢,(z9) # 0 for all
but finite many of {g,}, then {g,} is normal at z, by Proposition 2.

Thus & is normal in D and hence Theorem 1.1 is proved.
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SPARSE HYPERGEOMETRIC SYSTEMS
Timur Sadykov
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pr. Svobodny, 79, Krasnoyarsk, 660041, Russia, e-mail: sadykov@lan.krasu.ru

Abstract. We study the approach to the theory of hypergeometric functions in several variables
via a generalization of the Horn system of differential equations. A formula for the dimension of its
solution space is given. Using this formula we construct an explicit basis in the space of holomorphic
solutions to the generalized Horn system under some assumptions on its parameters.

Keywords: hypergeometric functions, Horn system of differential equations, Mellin system.

1 Introduction

There exist several approaches to the notion of a hypergeometric function depending on several
complex variables. It can be defined as the sum of a power series of a certain form (such series
are known as I'-series) [10], as a solution to a system of partial differential equations [9], [11],
[1], or as a Mellin-Barnes integral [15]. In the present paper we study the approach to the theory
of hypergeometric functions via a generalization of the Horn system of differential equations.
We consider the system of partial differential equations of hypergeometric type

" Pi(0)y(r) = Qi(O)y(x), i=1,....n, (1.1)
where the vectors u; = (u;1,...,u;) € Z" are assumed to be linearly independent, P;, Q; are
nonzero polynomials in n complex variables and § = (04, ...,6,),0; = xia%i' We use the notation

¥ = gyt I {u; ), form the standard basis of the lattice 2" then the system (1.1)
coincides with a classical system of partial differential equations which goes back to Horn and
Mellin (see [13] and § 1.2 of [10]). In the present paper the system (1.1) is referred to as the
sparse hypergeometric system (or generalized Horn system) since, in general, its series solutions
might have many gaps.

A sparse hypergeometric system can be easily reduced to the classical Horn system by a
monomial change of variables. The main purpose of the present paper is to discuss the relation
between the sparse and the classical case in detail for the benefit of a reader interested in explicit
solutions of hypergeometric D-modules. We also furnish several examples which illustrate crucial
properties of the singularities of multivariate hypergeometric functions. Most of the statements
in this article are parallel to or follow from the results in [16].

A typical example of a sparse hypergeometric system is the Mellin system of equations
(see |7]). One of the reasons for studying sparse hypergeometric systems is the fact that knowing
the structure of solutions to (1.1) allows one to investigate the so-called amoeba of the singular
locus of a solution to (1.1). The notion of amoebas was introduced by Gelfand, Kapranov and
Zelevinsky (see [12]|, Chapter 6, § 1). Given a mapping f(x), its amoeba A is the image of the
hypersurface f~'(0) under the map (1, ..., z,) — (log|zy],...,log|z,|). In section 5 we use the

The author was supported by the Russian Foundation for Basic Research, grant 09-01-00762-a, by grant
no. 26 for scientific research groups of Siberian Federal University and by the "Dynasty"foundation.
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results on the structure of solutions to (1.1) for computing the number of connected components
of the complement of amoebas of some rational functions. The problem of describing the class
of rational hypergeometric functions was studied in a different setting in [5], [6]. The definition
of a hypergeometric function used in these papers is based on the Gelfand-Kapranov-Zelevinsky
system of differential equations [9], [10], [11].

Solutions to (1.1) are closely related to the notion of a generalized Horn series which is
defined as a formal (Laurent) series

y(e) =27 ) p(s)a’, (1.2)

seZ™

whose coefficients ¢(s) are characterized by the property that p(s+u;) = @(s)R;(s). Here R;(s)
are rational functions. We also use notations v = (y1,...,7,) € C" Re~v; € [0,1), 2° =
xit ...z In the case when {u;};_, form the standard basis of Z" we get the definition of
the classical Horn series (see [10], § 1.2).

In the case of two or more variables the generalized Horn system (1.1) is in general not
solvable in the class of series (1.2) without additional assumptions on the polynomials P;, Q;.
In section 2 we investigate solvability of hypergeometric systems of equations and describe
supports of solutions to the generalized Horn system. The necessary and sufficient conditions
for a formal solution to the system (1.1) in the class (1.2) to exist are given in Theorem 2.1.

In section 3 we consider the D-module associated with the generalized Horn system. We give
a formula which allows one to compute the dimension of the space of holomorphic solutions
to (1.1) at a generic point under some additional assumptions on the system under study
(Theorem 3.3). We give also an estimate for the dimension of the solution space of (1.1) under
less restrictive assumptions on the parameters of the system (Corollary 3.4).

In section 4 we consider the case when the polynomials P;, (); can be factorized up to
polynomials of degree 1 and construct an explicit basis in the space of holomorphic solutions to
some systems of the Horn type. We show that in the case when R;(s+u;)R;(s) = R;(s+uw;)Ri(s),
Qi(s +u;) = Qi(s) and deg Q;(s) > deg P(s), i, = 1,...,n, i # j, there exists a basis in the
space of holomorphic solutions to (1.1) consisting of series (1.2) if the parameters of the system
under study are sufficiently general (Theorem 4.1).

In section 5 we apply the results on the generalized Horn system to the problem of describing
the complement of the amoeba of a rational function. We show how Theorem 2.1 can be used
for studying Laurent series developments of a rational solution to (1.1). A class of rational
hypergeometric functions with minimal number of connected components of the complement
of the amoeba is described.

2 Supports of solutions to sparse hypergeometric systems

Suppose that the series (1.2) represents a solution to the system (1.1). Computing the action
of the operator % P;(f) — Q);(f) on this series we arrive at the following system of difference
equations

o(s +u)Qi(s +v+u) =¢(s)P(s+7), i=1,...,n. (2.1)

The system (2.1) is equivalent to (1.1) as long as we are concerned with those solutions to the
generalized Horn system which admit a series expansion of the form (1.2). Let Z" 4 denote the
shift in C" of the lattice Z™ with respect to the vector v. Without loss of generality we assume
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that the polynomials P;(s), Q;(s + u;) are relatively prime for all ¢ = 1,...,n. In this section
we shall describe nontrivial solutions to the system (2.1) (i.e. those ones which are not equal
to zero identically). While looking for a solution to (2.1) which is different from zero on some
subset S of Z" we shall assume that the polynomials P;(s), Q;(s), the set S and the vector
satisfy the condition

|[Pi(s + )| +1Qils +v +u)| # 0, (2.2)

for any s € S and for all i = 1,...,n. That is, for any s € S the equality P;(s+ ) = 0 implies
that Q;(s +v +w;) # 0 and Q;(s + v+ u;) = 0 implies P;(s + ) # 0.

The system of difference equations (2.1) is in general not solvable without further restrictions
on P, Q;. Let R;(s) denote the rational function P;(s)/Qi(s + u;), i = 1,...,n. Increasing the
argument s in the ith equation of (2.1) by u; and multiplying the obtained equality by the jth
equation of (2.1), we arrive at the relation ¢(s+u; +u;)/¢(s) = Ri(s+u;)R;(s). Analogously,
increasing the argument in the jth equation of (2.1) by u; and multiplying the result by the ith
equation of (2.1), we arrive at the equality (s + u; + u;)/¢(s) = R;j(s + u;)R;(s). Thus the
conditions

Ri(s +uj)Ri(s) = Rj(s +u;))Ri(s), i,j=1,...,n (2.3)

are in general necessary for (2.1) to be solvable. The conditions (2.3) will be referred to as
the compatibility conditions for the system (2.1). Throughout this paper we assume that the
polynomials P;, Q; defining the generalized Horn system (1.1) satisfy (2.3).

Let U denote the matrix whose rows are the vectors uq,...,u,. A set S C Z" is said to
be U-connected if any two points in S can be connected by a polygonal line with the vectors
uy, ..., U, as sides and vertices in S. Let ¢(s) be a solution to (2.1). We define the support
of ¢(s) to be the subset of the lattice Z" where ¢(s) is different from zero. A formal series
7y cqnp(s)z® is called a formal solution to the system (1.1) if the function ¢(s) satisfies
the equations (2.1) at each point of the lattice Z". The following Theorem gives necessary and
sufficient conditions for a solution to the system (2.1) supported in some set S C Z" to exist.

Theorem 2.1 For S C 7" define
Si={seS:s+u; ¢S}, S ={s¢S:s+u;e€S},i=1,...,n

Suppose that the conditions (2.2) are satisfied on S. Then there exists a solution to the system
(2.1) supported in S if and only if the following conditions are fulfilled:

PZ(S+7)|S: = 07 QZ(S+7+UZ)|S:/ = 07 1= 1,...,77,, (24>

Pi(s+fy)|s\slf_ #£0, Qi(s+v+u)|s#0,i=1,...,n. (2.5)

The proof of this theorem is analogous to the proof of Theorem 1.3 in [16]. Theorem 2.1
will be used in section 4 for constructing an explicit basis in the space of holomorphic solutions
to the generalized Horn system in the case when deg@); > deg P and Q;(s + u;) = Q;(s),
1,7 =1,...,n,1 # j. In the next section we compute the dimension of the space of holomorphic
solutions to (1.1) at a generic point.
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3 Holomorphic solutions to sparse systems

Let G; denote the differential operator 2" P;(6) —Q;(0),i = 1,...,n. Let D be the Weyl algebra
in n variables [3], and define M = D/ 3" | DG; to be the left D-module associated with the
system (1.1). Let R = Clz1,...,2,) and R[z] = Rlxy,...,x,] = Clz1,..., Ty, 21,. .., 2,). We
make R|z] into a left D-module by defining the action of 9; on R[z] by

0

Let ® : D — R[z| be the D-linear map defined by

A s LG e I P UL (3.2)

It is easily checked that ® is an isomorphism of D-modules. In this section we establish some
properties of linear operators acting on R[z]. We aim to construct a commutative family of D-
linear operators W; : R[z] — R|x], i = 1,...,n which satisfy the equality ®(G;) = W;(1). The
crucial point which requires additional assumptions on the parameters of the system (1.1) is the
commutativity of the family {W;};_, which is needed for computing the dimension (as a C-vector
space) of the module R[z]/ Y7, WiR[z] at a fixed point 2(?). We construct the operators W;
and show that they commute with one another under some additional assumptions on the
polynomials Q;(s) (Lemma 3.1). However, no additional assumptions on the polynomials P;(s)
are needed as long as the compatibility conditions (2.3) are fulfilled.
Following the spirit of Adolphson [1] we define operators D; : R[z] — R|x] by setting

Di:zi%jtxizi, i=1,...,n. (3.3)
It was pointed out in [1] that the operators (3.3) form a commutative family of D-linear
operators. Let D denote the vector (Dy,...,D,). For any ¢ = 1,...,n we define operator
V,: R[r] — R[z] by V; = z; ' D;. This operator commutes with the operators d; since both D;
and the multiplication by z; ' commute with 0;. Moreover, the operator V; commutes with V
for all 1 <+7,5 <n and with D; for i # j. In the case ¢ = j we have V,D; = V; + D;V,.
Thanks to Lemma 2.2 in [16] we may define operators W; = P;(D)V* — @Q;(D) such that
for any ¢ = 1,...,n W, is a D-linear operator satisfying the identity ®(G;) = W;(1). It
follows by the D-linearity of W; that Y . , W;R[z] and R[z]/> "  W;R[z] can be considered
as left D-modules. Using Theorem 4.4 and Lemma 4.12 in [1]|, we conclude that the following

isomorphism holds true:
M ~ Rla] / (Z WJ-R[:E]> . (3.4)
j=1

In the general case the operators W; = P;(D)V" —Q;(D) do not commute since D; does not
commute with V;. However, this family of operators may be shown to be commutative under
some assumptions on the polynomials @;(s) in the case when the polynomials P;(s), Q;(s)
satisfy the compatibility conditions (2.3). The following Lemma holds.

Lemma 3.1 The operators W; = P,(D)V"% — Q;(D) commute with one another if and only if
the polynomials P;(s), Q:(s) satisfy the compatibility conditions (2.3) and for anyi,j =1,...,n,
i # J, Qi(s +u;) = Qi(s).
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Proof Since V; = zi_l + Dizi_1 it follows that V;D; = V,; + D;V; and that V,; commutes
with D; for i # j. Hence for any o = (a1, ..., ) € Nj

VD D = DS (D; + 1) ... DO, (3.5)

Let E! denote the operator which increases the ith argument by ¢, that is, E! f(z) = f(x +te;).
Here {e;}7_, denotes the standard basis of z". It follows from (3.5) that

ViP;(D) = (E; P;)(D)V. (3.6)

For a € 7™ let E* denote the composition Ef* o ... o E%. Using (3.6) we compute the
commutator of the operators W;, W; :

Win - W]Wz = (PZ(D)(EWP))(D) — PJ(D)(EUJR)(D)> VAR

((B“Q)(D) = QD)) B(D)V™ + (Q4(D) = (B“Q)(D)) P(D)V™.  (3.7)

Let us define the grade g(x®2°) of an element x°2° of the ring R[x] to be a — 3. Notice that
g(Di(z*27)) = a — 3 and that g(V;(z%2°)) = a — 3 + €;, for any a, 3 € NJ. The result of the
action of the operator in the right-hand side of (3.7) on x®2” consists of three terms whose
grades are o — 8+ w; + uj, o« — 3+ u; and a — 3 + u,;. Thus the operators W;, W; commute if
and only if

and
P(D)(E“P,)(D) = P,(D)(E“P)(D), i,j = 1.....n. (3.9)

It follows from (3.8) that the condition Q;(s+wu;) = Q;(s), 1,7 =1,...,n, # j is necessary for
the family {W;}"_, to be commutative. Under this assumption on the polynomials @Q;(s) the
compatibility conditions (2.3) can be written in the form

P(s+u;)Pj(s) = Pij(s +u;)Pi(s), i,j=1,...,n

and they are therefore equivalent to (3.9). The proof is complete.

For (¥ € " let @x(()) be the D-module of formal power series centered at z(?). Let C,

denote the set of complex numbers C considered as a Clzy, . . ., z,|-module via the isomorphism
C~Clxy,...,x,)/ (21 — a:go), ey Ty — :L’%O)). We use the following isomorphism (see Proposition

2.5.26 in [4] or [1], § 4) between the space of formal solutions to M at z(® and the dual space
of Cx(o) ®(C[x} M

HOIIlgD(M, ©x(0)) ~ Homg ((Cx(o) ®(C[:c] M, (C). (3.10)

This isomorphism holds for any finitely generated D-module. Using (3.4) and fixing the point z =
2 we arrive at the isomorphism

Cp0 ®Ca) (R[:B] / ZmR[x]> ~R /> W, ok, (3.11)
=1 =1
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where W, . are obtained from the operators W; by setting = = 2(©) . Combining (3.10)
with (3.11) we see that

Homqp (M, @x(O)) ~ Homg <R ZW}@@R, C) )
=1

Thus the following Lemma holds true.

Lemma 3.2 The number of linearly independent formal power series solutions to the system
(1.1) at the point x = (0 is equal to dim(CR/ Yo WioR.

For any differential operator P € D, P =3, ca(7) (%)a its principal symbol o(P)(z, z)
€ Rlz] is defined by o(P)(z,2) = >_,_,, ca(®)2®. Let Hi(z, 2) = 0(G;)(z,z) be the principal
symbols of the differential operators which define the generalized Horn system (1.1). Let J C
D be the left ideal generated by Gi,...,G,. By the definition (see [3], Chapter 5, § 2) the
characteristic variety char(M) of the generalized Horn system is given by

char(M) = {(z,2) € C*" : ¢(P)(x,2) = 0, for all P € J}.

Let us define the set Uy C C* by Uy = {z € C" : 3z # 0 such that (z,2) € Char(M)}.
Theorem 7.1 in [3, Chapter 5] yields that for (%) ¢ Uy,

Homqp (M, @x(m) ~ Homp(M, O,)).

It follows from [18] (pages 146,148) that the C-dimension of the factor of the ring R with respect
to the ideal generated by the regular sequence of homogeneous polynomials

Hi(2©,2),..., H,(z9, 2) is equal to the product [, deg H;(z®, z). Since a sequence of n
homogeneous polynomials in n variables is regular if and only if their common zero is the origin,
it follows that Uje = () in our setting. Using Lemmas 3.1,3.2, and Lemma 2.7 in [16], we arrive
at the following Theorem.

Theorem 3.3 Suppose that the polynomials P;(s), Q;(s) satisfy the compatibility conditions
(2.3) and that Qi(s + u;) = Qi(s) for any i, = 1,...,n, i # j. If the principal symbols
H (2@, 2), ..., Hy (29, 2) of the differential operators G1, . .., G, form a regular sequence at 2°)
then the dimension of the space of holomorphic solutions to (1.1) at the point (%) is equal to
[T, deg Hi(z¥, 2).

Using Lemma 2.7 in [16], we obtain the following result.

Corollary 3.4 Suppose that the principal symbols Hy(z©), 2), ..., H, (2, 2) of the differential
operators Gy, ...,G, form a reqular sequence at x®. Then the dimension of the space of
holomorphic solutions to (1.1) at the point ¥ is less than or equal to [[i_, deg H;(z?, 2).

In the next section we, using Theorem 3.3, construct an explicit basis in the space of
holomorphic solutions to the generalized Horn system under the assumption that P;, Q); can
be represented as products of linear factors and that deg@); > deg P;, i =1,...,n.
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4 Explicit basis in the solution space of a sparse hypergeometric system

Throughout this section we assume that the polynomials P;(s), Q;(s) defining the generalized
Horn system (1.1) can be factorized up to polynomials of degree one. Suppose that P;(s), Qi(s)
satisfy the following conditions: Q;(s + u;) = Qi(s) and deg Q; > deg P, for any 4,5 =1,...,n,
1 # j. In this section we will show how to construct an explicit basis in the solution space of
such a system of partial differential equations under some additional assumptions which are
always satisfied if the parameters of the system under study are sufficiently general.

Recall that U denotes the matrix whose rows are ui, . .., u, and let U denote the transpose
of U. Let A = (UT)™", let (As), denote the ith component of the vector As and d; = deg Q;.
Under the above conditions the polynomials @);(s) can be represented in the form

d;

QZ(S) = H((AS)Z - Oéij), 1= 1, Lo, Q5 e C.

i=1

By the Ore-Sato theorem [17] (see also § 1.2 of [10]) the general solution to the system of
difference equations (2.1) associated with (1.1) can be written in the form
P F((AZ, S> — Ci)

o(s) =t ..t ———=
17 T16 T((As), — g + 1)

where p € Ny, t;,¢; € C, A; € Z" and ¢(s) is an arbitrary function satisfying the periodicity
conditions ¢(s+wu;) = ¢(s), i = 1,...,n. (Given polynomials P;, ); satisfying the compatibility
conditions (2.3), the parameters p, t;, ¢;, A; of the solution ¢(s) can be computed explicitly. For
a concrete construction of the function ¢(s) see [16]. The following Theorem holds true.

¢(s), (4.1)

Theorem 4.1 Suppose that the following conditions are fulfilled.
1. For anyi,j=1,....,n, 1% j it holds Q;(s + u;) = Q;(s) and deg Q; > deg P.

2. The difference ou; — o, is never equal to a real integer number, for any i = 1,...,n and
J# k.
3. For any multi-index I = (iy, ..., i,) with iy, € {1,...,dg} the product [[_, ((Ai, s) —¢;) never
vanishes on the shifted lattice Z" + ~yr, where yr = (i), - -+, Wi, )-
Then the family consisting of [ ]\, d; functions
[[7_: D({(Ai, s + 1) — @) ]

yi(w) =™ Y et x (4.2)

n d

seZ"NKy Hk:l ij:1 F((As)k Qi — Qg T+ 1)

is a basis in the space of holomorphic solutions to the system (1.1) at any point x € (C*)" =
(C\{0})". Here Ky is the cone spanned by the vectors uy, . .., Uy,.

Proof It follows from Theorem 2.1 and the assumptions 2,3 of Theorem 4.1 that the series (4.2)
formally satisfies the generalized Horn system (1.1). Let yj denote the kth row of A. Since
deg Qi(s) > deg Pi(s), i =1,...,n it follows by the construction of the function (4.1) (see [16])
that all the components of the vector A = > A, — >  d;x; are negative. Thus for any
multi-index / the intersection of the half-space Re(A, s) > 0 with the shifted octant Ky +~y is
a bounded set. Using the Stirling formula we conclude that the series (4.2) converges everywhere
in (C*)" for any multi-index I.
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The series (4.2) corresponding to different multi-indices I, J are linearly independent since by
the second assumption of Theorem 4.1 their initial monomials 277, 277 are different. Finally, the
conditions of Theorem 3.3 are satisfied in our setting since the first assumption of Theorem 4.1
yields that the sequence of principal symbols Hy (2, 2),..., H,(z\?, 2) € R of hypergeometric
differential operators defining the generalized Horn system is regular for (® € (Cc*)". Hence
by Theorem 3.3 the number of linearly independent holomorphic solutions to the system under
study at a generic point equals [[}, d;. In this case Uy = {2 € ¢ : a:§°’ L) = 0}.
Thus the series (4.2) span the space of holomorphic solutions to the system (1.1) at any point
2 € (c*)". The proof is complete.

In the theory developed by Gelfand, Kapranov and Zelevinsky the conditions 2 and 3 of
Theorem 4.1 correspond to the so-called nonresonant case (see [9], § 8.1). Thus the result on
the structure of solutions to the generalized Horn system can be formulated as follows.

Corollary 4.2 Let 20 € (C*)" and suppose that Q;(s + u;) = Q;(s) and deg Q; > deg P; for
any i,j5 = 1,...,n, i # j. If the parameters of the system (1.1) are nonresonant then there
exists a basis in the space of holomorphic solutions to (1.1) near © whose elements are given
by series of the form (1.2).

5 Examples

In this section we use the results on the structure of solutions to the generalized Horn system for
computing the number of Laurent expansions of some rational functions. This problem is closely
related to the notion of the amoeba of a Laurent polynomial, which was introduced by Gelfand
et al. in [12]| (see Chapter 6, § 1). Given a Laurent polynomial f, its amoeba Ay is defined to
be the image of the hypersurface f~!(0) under the map (z1,...,z,) — (log|xy],...,log|z,]|).
This name is motivated by the typical shape of A; with tentacle-like asymptotes going off to
infinity. The connected components of the complement of the amoeba are convex and each such
component corresponds to a specific Laurent series development with the center at the origin
of the rational function 1/f (see [12], Chapter 6, Corollary 1.6). The problem of finding all
such Laurent series expansions of a given Laurent polynomial was posed in [12] (Chapter 6,
Remark 1.10).

Let f(z1,...,2,) = > ,cg@x® be a Laurent polynomial. Here S is a finite subset of
the integer lattice Z™ and each coefficient a, is a non-zero complex number. The Newton
polytope Ny of the polynomial f is defined to be the convex hull in R™ of the index set S.
The following result was obtained in [8].

Theorem 5.1 Let f be a Laurent polynomial. The number of Laurent series expansions with
the center at the origin of the rational function 1/f is at least equal to the number of vertices
of the Newton polytope Ny and at most equal to the number of integer points in Ny.

In the view of Corollary 1.6 in Chapter 6 of [12|, Theorem 5.1 states that the number of
connected components of the complement of the amoeba A is bounded from below by the
number of vertices of Ny and from above by the number of integer points in N;. The lower
bound has already been obtained in [12|. In this section we describe a class of rational functions
for which the number of Laurent expansions attains the lower bound given by Theorem 5.1. Our
main tool is Theorem 2.1 which allows one to describe supports of the Laurent series expansions
of a rational function which can be treated as a solution to a generalized Horn system. In the
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following three examples we let wuq,...,u, € Z" be linearly independent vectors, p € N and
let ai,...,a, € C* be nonzero complex numbers. We denote by U the matrix with the rows
Uy, ..., u, and use the notation (\;;) = A = (UT)_1 and v; = A\y; + - -+ + A\ The conclusions
in all of the following examples can be deduced from Theorem 7 in [14].

Example 5.2 The function y;(z) = (1 — a;2™ — - - — a,z*) " satisfies the following system
of the Horn type

alxul ‘91
(10 4+ b+ Dy(x) =A | ... | yl2). (5.1)
apxhm 0,

Indeed, after the change of variables z;(&1, ..., &) = & ... &M (whose inverse is & = 2%) the
system (5.1) takes the form

The function (1 —ai& — -+ — a,&,) " satisfies (5.2) and therefore the function yy(z) is a
solution of (5.1). The hypergeometric system (5.1) is a special instance of systems (5.3) and (5.5).
We treat this simple case first in order to make the main idea more transparent.

By Theorem 3.3 the space of holomorphic solutions to (5.1) has dimension one at a generic
point and hence y;(x) is the only solution to this system. Thus the supports of the Laurent
series expansions of y; () can be found by means of Theorem 2.1. There exist n+1 subsets of the
lattice Z" which satisfy the conditions in Theorem 2.1 and can give rise to a Laurent expansion
of y1(z) with nonempty domain of convergence. These subsets are Sy = {s € z" : (As); >
0,i=1,....,n}and S; ={s€Z" 151+ -+ 15, +1 <0, (As); >0,i#j}, j=1,...,n.
Besides Sy, . .., S, there can exist other subsets of Z" satisfying the conditions in Theorem 2.1.
(Such subsets “penetrate” some of the hyperplanes (As); =0, 181 + - - - + 8, + 1 = 0 without
intersecting them; subsets of this type can only appear if | det U| > 1). However, none of these
additional subsets gives rise to a convergent Laurent series and therefore does not define an
expansion of yi(x). Indeed, in any series with the support in a “penetrating” subset at least
one index of summation necessarily runs from —oo to co. Letting all the variables, except for
that one which corresponds to this index, be equal to zero, we obtain a hypergeometric series
in one variable. The classical result on convergence of one-dimensional hypergeometric series
(see [10], § 1) shows that this series is necessarily divergent. Thus the number of Laurent series
developments of y;(x) cannot exceed n + 1. The Newton polytope of the polynomial 1/y;(x)
has n 4 1 vertices since the vectors uy, ..., u, are linearly independent. Using Theorem 5.1 we
conclude that the number of Laurent series expansions of y;(x) equals n 4+ 1. Thus the lower
bound for the number of connected components of the amoeba complement is attained.

Example 5.3 Recall that ¢ denotes the vector (:Bla%l, o ,xn%> and let (Af), denote the
1th component of the vector Af. Let G be the differential operator defined by

G=(A0),+---+ (AD),_, +p(AD), +p.
The function y(z) = (1 — a1z™ — -+ - — ap_y2*1)” — auz¥*) "' is a solution to the following
system of differential equations of hypergeometric type
a;z"Gy(r) = (A0)y(x), i=1,....,n—1,

i (pﬁ(s +j>> y(z) = (H (b(A6), +j>> y(2). (5:3)

J=0 J=0
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Indeed, the same monomial change of variables as in Example 5.2 reduces (5.3) to the system

a;&; 9y(l’) = efiy(I)’ t=1,...,n—1,
s (”1j0<9+j>) yia) = <H (w0, +j>> e, o4

where G = 0, + -+ -+ 0, _, + pbe, + p. The system (5.4) is satisfied by the function

(1—a1& — - —ap_1&1)P — angn)_l. This shows that yo(z) is indeed a solution to (5.3).
Thus the support of a Laurent expansion of ys(z) must satisfy the conditions in Theorem 2.1.
Notice that unlike (5.1), the system (5.3) can have solutions supported in subsets of the shifted
lattice Z"+-y for some v € (0, 1)". Yet, such subsets are not of interest for us since we are looking
for Laurent series developments of yo(x). The subsets Sy = {s € 2" : (As); > 0,i=1,...,n}
and S; = {s € 2" : (As)1 + -+ (As)p—1 + p(As),, +p <0, (As); > 0,0 # j},j=1,...,n
satisfy the conditions in Theorem 2.1. The same arguments as in Example 5.2 show that no
other subsets of Z" satisfying the conditions in Theorem 2.1 can give rise to a convergent
Laurent series which represents yo(z). This yields that the number of expansions of ys(x) is at
most equal to n + 1. The Newton polytope of the polynomial 1/ys(x) has n + 1 vertices since
the vectors uy, ..., u, are assumed to be linearly independent. Using Theorem 5.1 we conclude
that the number of Laurent series developments of y,(z) equals n + 1.

Example 5.4 Let H be the differential operator defined by H = p(Af), + --- + p(Af), +p.
Using the same change of variables as in Example 5.2, one checks that
y3(z) = (1 — a12")P — apz™ — - - — auz¥) " solves the system

arz™ (A9), + H) y(z) = (A9), y(z),

aigp“i%f}{ (::: (AG); +FH+7) |y(x) = 55)
(AB), <p1j:(f]{ —-p +j)) y(x), i=2,...,n.

Analogously to Example 5.2, we apply Theorem 2.1 to the system (5.5) and conclude that the
number of Laurent expansions of y3(x) at most equals n + 1. Thus it follows from Theorem 5.1
that the number of such expansions equals n + 1.

Example 5.5 The Szego kernel of the domain {z € C? : |z| + |22] < 1} is given by the
hypergeometric series

F(281 —|— 282 —|— 2)
(ere) = ) T(2s + 1D (2s5 + 1)1 72

51,5220

(1 — T — 1’2)(1 + 225'1252 — .TL’% — LU%) + 85(71252
((1 — T — l’2>2 — 425'15(72)2

(See [2], Chapter 3, § 14.) This series satisfies the system of equations

(5.6)
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There exist three subsets of the lattice Z" which satisfy the conditions in Theorem 2.1, namely
{s€2?:5>0,5>0}{s€Z%:5>0,51+8+1<0} {s€Z%:5,>0,8+8+1<0}.
Using Theorem 2.1 we conclude that the number of Laurent expansions centered at the origin
of the Szegd kernel (5.6) at most equals 3. The Newton polytope of the denominator of the
rational function (5.6) is the simplex with the vertices (0,0), (4,0), (0,4). By Theorem 5.1 the
number of Laurent series developments of the Szego kernel at least equals 3. Thus the number
of Laurent expansions of (5.6) (or, equivalently, the number of connected components in the
complement of the amoeba of its denominator) attains its lower bound.

Example 5.6 Let u; = (1,0),us = (1,1) and consider the system of equations

() = (g — 222 ) (o),
5.7
r2y(z) = 9:2%) y(x). (5:1)

The principal symbols Hy(z, z), Ha(x, 2) € R[z] of the differential operators defining the system
(5.7) are given by Hi(x, z) = —x121 +Xa29, Ho(x,2) = —925. By Theorem 3.3 the dimension of
the solution space of (5.7) at a generic point is equal to 1 since dim¢ R/(Hi(z, z), Ha(z, 2)) = 1
for xyxs # 0. For computing the solution to (5.7) explicitly we choose v = 0 and consider the
corresponding system of difference equations

e(s+u)(s1—sa+1) = p(s),
{ ©(5+ ug)(s2 + 1) o(s). (5.8)

The general solution to (5.8) is given by ¢(s) = (I'(sy — s2 + 1)T(s2 + 1)) ¢(s), where ¢(s) is
an arbitrary function which is periodic with respect to the vectors uq, us.

There exists only one subset of Z? satisfying the conditions of Theorem 2.1, namely S =
{(s1,82) € Z* : 51 — 89 > 0, 53 > 0}. Choosing ¢(s) = 1 and using (4.2), we obtain the solution
to (5.7):

xytas?
y() Z> Tt — s+ (s + 1) exp(r: + 71) (5.9)
§1 — 82 2 U,
s2 >0

It is straightforward to check that the solution space of (5.7) is indeed spanned by (5.9).
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Introduction

The notion of Saito free divisors was introduced by K. Saito (cf. [10]). He also formulated and
stressed the importance of systems of uniformization equations along such divisors (cf. [9]).
In this note, I explain recent progress on systems of uniformization equations along Saito free
divisors defined as the zero sets of the discriminants of complex reflection groups of rank three.
The hypersurface defined by the discriminant of a real reflection group is a typical example
of Saito free divisors. It is known that the discriminant of a complex reflection group of rank
three is also a Saito free divisor (cf. [8], [5]). But I don’t know whether it is true for the case of
arbitrary complex reflection groups. My interests on this subject are to construct (1) Saito free
divisors, (2) systems of uniformization equations, and (3) their solutions in a concrete manner.
Restricting to the case of three dimensional affine space, I obtained some results on (1), (2).
But it is difficult to attack (3) compared with (1), (2). The purpose of this note is to report my
results on (1), (2) for the discriminants of irreducible complex reflection groups of rank three.
A part of the results of the last three sections are obtained by a joint research with M. Kato
(Univ. Ryukyus).

1 Definition of Saito free divisors

Let F(z) = F(x1,x9,...,2,) be a reduced polynomial. Then D = {z € C*; F(z) = 0} is a
(weighted homogeneous) Saito free divisor if (C1)4-(C2) hold.
(C1) There is a vector field
i=1

such that FF' = dF, where my, ms, ..., m,,d are positive integers with 0 < m; < my < --- <
My,
(C2) There are vector fields
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such that
(i) each a;;(z) is a polynomial of 1, zo, ..., zy,
(ii) det(a” (x)) = cF(x) for a non-zero constant c,
(iii) V! = E, V'F(z) = ¢;(z)F () for polynomials ¢;(z),
(iv) [E, V'] = k;V'" for some constants k;,
(v) Vi(j=1,2,...,n) form a Lie algebra over R = C[zy, T, ..., T,)
We now give examples of Saito free divisors.
Let

f@) =t" 4+ 2ot™ 2 F a3t" P it 2y,

be a polynomial of nth degree and let A(zy, x3, ..., x,) be the discriminant of f(¢). Then A =0
is a Saito free divisor in C"~.

More generally, the zero locus of the discriminant of an irreducible real reflection group is
a Saito free divisor.

Basic reference of this section is [10].

2 Irreducible complex reflection groups of rank three.

In this section, we collect some results on irreducible complex reflection groups of rank three.
A basic reference on complex reflection groups is Shephard-Todd [16] (see also [8]).

Reflection groups treated in this section are real reflection groups of types As, B3, H3 and
complex reflection groups of No.24,No.25,N0.26,No0.27 in the sense of [16]. The real reflection
group of type Hj is same as the group No. 23 in [16].

Let G be one of the seven groups and let Py, P5, P3 algebraically independent basic G-
invariant polynomials and put k; = deg¢(P;). We may assume that ky < ky < k3. Let r be the
greatest common divisor of k1, kg, k3 and put & = k;/r (j = 1,2,3). For the later convenience,
we write x1, 2y, x3 for P, Ps, P3. Let dg(x1,xo,23) be the discriminant of G expressed as a
polynomial of xy, xs, x3.

In the cases As, Bs, Hs, taking G-invariants @, x, x3 suitably, Fyy(a,) (21,22, 23),

Fyw () (21, T2, 23), Fw (my) (21, T2, x3) are discriminants for G up to a constant factor, respectively,
where Fy 1, Fp 1, Fr1 are the polynomials given in Theorem of [13].

| group |order | ky, ko, ks | degree | (K, K}, kf)

A, || W(Ay) | 24[2,3,4 |12 (2,3, 4)
By W (Bs) 48 12,4,6 18 (
H; W(Hs)| 120(2,6,10 |30 (
No.24 G336 336 4,6,14 42 (
(
(
(

No.25 || Ggs | 64816,9,12 |36
N0.26 | Giaes | 1296 |6,12,18 |54
No.27 || Gawgo | 2160 | 6,12,30 | 90

The concrete forms of discriminants of W (As), W(B3), W(Hs) are as follows:
Type Az:  16z7w3 — 4x3xs — 1282223 + 144z 20323 — 2725 + 25623,
Type By:  wx3(22x3 — 4x3 — 4xiws + 18z w903 — 2723).
Type Hy:  —50x} + (4af — 502%x0)23 + (4z{xs + 60xi23 4 2252123 )2 — 15225
—1152323 — 102523 — 4222
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The discriminants for the groups No.25, No.26 are same as those for W (A3), W (Bs)
respectively by taking the basic invariants suitably. On the other hand, those for the groups
No.24, No.27 will be given in §5, §.6.

3 Systems of uniformization equations along Saito free divisors.

Let F'(z) = 0 be a Saito free divisor and let V7 (5 = 1,2, ..., n) be basic vector fields logarithmic

along F' = 0. Let u = u(xy,x9, ..., 2,) be an unknown function. Assume that V'u = su for a

constant s(# 0) Put @ = *(u, V?u,...,V"u) and consider the system of differential equations
(UE) Viu=A;(x)d (j=1,2,...,n)

where A;(z) (j =1,2,...,n) are n X n matrices whose entries are polynomials of .

If (UE) is integrable, it is called a system of uniformization equations with respect to the
Saito free divisor F' = 0.

The system (UE) is written by

Viu=su
(UB) Y viviu = ST RE @)vhu (v, )
k=1

where hj;(x) are polynomials of . There are n number of fundamental solutions of (UEa). Let
uj(x) (j =1,2,...,n) be fundamental solutions outside the divisor /' = 0. Then

p(x) = (w(2), uz (@), .., un(2))

defines a map of C" — {F = 0} to C". The following two problems are fundamental in the
study on systems of uniformization equations.
PROBLEM 1: Construct fundamental solutions u;(z) (j =1,2,...,n) of (UEa).
PROBLEM 2: Construct the inverse of ¢(x) in a concrete manner.

These two problems are solved in the case W(Aj3) for a special but interesting system of
uniformization equations by K. Saito. For the details of the results, see [9].

4  The discriminant of the Coxeter group W(Hj;) of type Hs.

A part of the argument in the case of W (As) in [9] is applicable to the case of the Saito free

divisor defined by the zero locus of the discriminant of the Coxeter group of type Hs. In this

section, I will explain the results on this case. For the details of results in this section, see [15].
The discriminant of the polynomial P(t) defined by

1 1
P(t) =% + y1t° + yot® + yst + 2—0y§ — U1y (4.1)

is A% up to a constant factor, where
A = 125ylyy + 864y5 — 1250y y5ys — 9000y1y5ys + 3125¢7y3 + 25000y 12y3 + 50000y5. (4.2)

Remark 4.1 The equation P(t) =0 is essentially same as "Die allgemeine Jacobi’sche
Gleichung sechsten Grades” (see p.223 in Klein’s book [7]).



Jiro Sekiguchi. Reflection groups of rank three ... 80

The polynomial A is regarded as the discriminant of the group W (H3). In fact, the substitution
of the variables (y1, y2, y3) with (z1, xe, x3) defined by the relations

y1 = —4n
yo = 1023 — 251, (4.3)
Ys = —425? + 501’%%’2 — 502[‘3

implies that A coincides with the determinant of the matrix M up to a constant factor, where
M is defined by

T 31’2 51’3
M = 3LU2 2LU3 + 22[‘%.%’2 7.]7125% + 225'?%’2 (44)
Sug Twias + 2xizs 1(15a3 + datwy + 18x3a3)

and det M is the discriminant of W (Hj3) (cf. [17]). In the sequel, we always regard P(t) as a
polynomial of ¢t and z. The hypersurface defined as the zero set of the polynomial fy = det M
is an example of Saito free divisors. To show this, we define vector fields Vj, Vi, V5 by

Vo Or,y
‘/l =M axz
v, 0.,

Then we have

Vo, Vi] = 2V4, [Vi, Va] = 4V4,
Vi, Va] = (42 + 222)Vp + day 2V,

and
Vofo =151,
Vi fo = 223 fo,
Vafo = 221 (227 + 512) fo

Remark 4.2 We note that

125

This implies that (—x1,5v/5/2 - x3) is a point on the hyperelliptic curve s> = P(t) on (s,t)
plane.

Consider the system of differential equations

u u
Vou Vou

The system (4.6) is a system of uniformization equations along the Saito free divisor fy(z) = 0.
Here B; are defined as follows:
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4+SQ
0 1 0

(8 + 7051 — 100s% + 850
2., +35s150 + 2s3) 2}
22571 ) 1(—180 + 825s; — 75052
—90s0 + 75s180) T2
(=128 + 805y + 10052 — 12850
+40s150 — 3253)2§
+10(—32 — 400s1 + 550s% + 3280
900 —20s150 — 8s3) w322
+(—4500s; 4 562557 + 1800s0) 23
+(2400 — 30005, + 1200s0) 21 23

\ J
0 0 1

L (84551 + 4so)x? s1

1 { (8 + 551 + 480),@%

L 1 2
1571 +10(8+551+so)x2} 15 (4 = 981+ 2s0)a1

(—128 + 80s1 + 10052 — 128
+4051$0 - 328%)$?
L) +10(=32 — 400s; + 55057 — 3250 | 4 (8 + 551 + 4sg)z? . ,
900 —20s150 — 8s3) 3w 1571 { +10(2+ 581 + so)xg} 15 (4 = 551 4 2s0)71
+51(—4500 + 562551 )73
+100(24 — 3081 + 1280)$1$3
(—128 + 80s1 + 1002 — 12850
+4051$0 - 328%)$§f
+(80 — 50051 + 50052 — 2800
1 +200s180 — 160s3) 2529
50 | +25(—104 — 13051 + 32553 + 4050
+255180 — 8s3)x3 w3
+100(12 — 1581 + 24sp) 2373
+50(60 — 7551 + 30s¢)z2x3

(16 — 5s1 + 8sq)x} }

1 3 Ty
4(4 + 551)I2(4$1 + 5$2) 15 {+(40 _ 5081 + 2080)1’2

0,1,2) coincides with W (Hs3). This case is treated in Haraoka-Kato [6].

We consider the system Vji = B, 14 (j =0, 1,2) with sg = —2, s; = 0. Then we obtain

Vou —2v

ViViv 0

Vi 0 (4.7)
Vo Vv —42%(322 + 2z173)v + 29(423 + 59)Viv

Theorem 4.4 (cf. [15]) The function v(x) defined by

is a solution of (4.7).

o(z) = / P 2ar

o
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The proof of this theorem is given by an argument similar to the case of type As.
If u(z) is a solution of (4.7) such that Vju = 0, then w is a solution of

Vou = —2u
Viu=20 (4.8)
{V# + 423 (323 + 22123) bu = 0

Taking two paths C7, Cy appropriately and define

w;(zr) = /C‘gol(t)dt (j=1,2)

J

Then each w;(z) is also a solution of (4.7) and in this manner we can construct solutions of
(4.8). In this case it is not clear whether solutions of (4.8) are expressed by special functions or
not. Moreover PROBLEM 2 (the construction of the inverse mapping) is still open.

5 The discriminant of the group (G335, Shephard-Todd notation No.24.

In this case, we begin with defining the polynomial
Pit) = t"— %(01 — 1)aot® — %(01 — Dast? — (e + 4)22t3 — 14(c; + 2)wox3t?
+2{(3c1 — )23 — (c1 + 5)a3}t + 1(Ter — 131) a3 + 27

The discriminant of P(t) is fZ up to a constant factor, where

fo = 2048293 — 220162523 + 600322323 — 17282% + 256x7x; — 1088zixiw,
2 23 23 3 2 23
3

—1008zox527 + 88x3w307 — X3
and fy is the discriminant of the complex reflection group Gssg. (The polynomial fy is same
as the one shown in p.262 of the paper of A. Adler in the book “The Eightfold Way by xq —
f, x3 — V, x7 — C. The polynomial P(t) is given in p.406 of GMA of F. Klein, Band II.)

Define vector fields Vg, Vi, V5 by

t(‘/zb ‘/17 ‘/2) == Mt(afﬂz’ 8%37 8%7)
Then Vg, Vi, V5 form the generators of logarithmic vector fields along fy = 0. Here

21’2 3!13'3 7!13'7
M=\ —La; —302(28x3w5 — 12823 + 3wo7)
Try —56x9(2x3 — 1323) 28(32x5 — 402322 — 84x) + 59xox377)

Put

A0={{s0,0,03},{0,s0+4,0},{0,0,s0+5}};
A1={{0,1,03},{1/162*x2* (4* (-1+c4-s0) * (8+c4+2*xs0) *x2~3-
3% (24+43%c4+5%c4~2+24xs0+
19%cd*xs0)*x372) ,1/9%(-10+c4-4*xs0) *x2~2,c4*x3/504},
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{-7/54% (8% (-152+37*c4+T+c4~2-172%s0-14*c4*s0-38*s0"2) ¥x2~3*x3-

18* (8*cd+c4~2+76%s0) *x3~3+3* (8+c4+38*s0) *x2*x7) ,
-14/3*%(-20+5*c4-38*s0) *x2*x3, -1/9% (8+c4+2*s0) *x2"2} };

A2={{0,0,1},

{-7/54% (8% (-152+37*c4+7xc4~2-190%s50-14%c4*s0-38*s072) *x2~3*x3-18*c4* (8+
c4)*x373+3* (8+c4+8*s0) *x2*x7) ,-14/3% (-152+5%c4-38%s0) *x2*x3,

-1/9% (2+c4+2*xs0) *x2" 2%},

{98/9% (48 (-24+5*c4+c4~2-36%30-c4*s0) *x2"5+4* (-440+97*c4+19%c4~2-658*s0
-89%c4*s0-722%s5072) *x2"2*%x3"2+3* (8+c4+38%s0) *x3*x7) ,

-1176%(-2+c4) * (2*x2~3-x3"2) ,14/3* (190+5*c4+76*s0) *x2*x3}};

There is a system of differential equation of rank three defined by

U U
Vou Vou

This system has two parameters s, 4.

Substituting so = —1,¢4 = 0 in A;, we obtain A§O);

-1 0 0 0 1 0
0 0
A= 0o 30|, A”= 0 22 0 |,
0 0 4 1(8a3wy — 7623 + bwgwr) —8dwowy —32a3
0 0 1
AP = 0 5321225 0
196(32x5 — 1122322 — brgrr) 2352(275 — 22) 532z9w3
The system
u u
Vil Viu | =AP | Vi | (7=0,1,2)
Vau Vou

has a quotient which is defined by Vju = 0. Assuming Vju = 0, the system for ( ‘;L " ) turns
2

( u ~1 0 u
%(%u)“(o 4)(%u)
u O 0 u

V. U B 0 1 U
L P\ Veu )\ 196(3225 — 1122222 — Saswr) 5327013 Vau

We now study the restriction of the system (5.1) to the hyperplane x5 = 0. Then we obtain
an ordinary differential equation

out to be

1822 10z,
02 u ; =0
( o sl + 20 T 29(17284] + x‘;)) !
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One of its solutions is
1 10 2 x§

posp (L1002
3 21'21°3" 1728z}
Similarly as the restriction to z3 = 0 of (5.1), we obtain an ordinary differential equation

25627 + 1122 3
92 — 2 8, _0
< 5T T (25628 — 22) T * 49(—256x7 + x2) “

One of its solutions is L3 3 )
—1/2 Tr
F e e
T2 (14’147772569:;)

Remark 5.1 We note that, in the case ¢y = =9, so = 1/2, the system of differential equations
has a monodromy group isomorphic to Gsss. This case is treated in [6].

6 The discriminant of the group G40, Shephard-Todd notation No.27.
Consider the polynomial
P(t) =t 4+ y1t’ + yot* + yst® + yat® + yst + ve.
Substitute y; (j =1,2,...,6) by z; (j =1,2,...,6);

yl=x1
y2=(5/16)*(9 + sr)*x2,
y3=(5/64)*(11 + 3*sr)*x1*xX2,
y4=(5/512)* (37 + 45*sr)*x2"2,
y5=(61 + b*sr)*(-64*x1"3*%x2 + 373*x1%x2°2 + 16*sr*x1%x2°2 + 2%*x3))/12288,
y6=(-279 + 145xsr)*(-512*%x1"4*x2 + 2864*x1°2*x2°2 +
1425%x2~3 + 135*sr*x2~3 +16*x1*x3)/3538944,

where sr? = —15. Then fZ the discriminant of the polynomial P(t), where

fo = 6553601142 — 17653762923 + 174060162724 — 738873602525 + 107371008258
+34338816x 25 — 4096281573 + 96640252313 — 7079527 2303 + 1622592030573
+186624x573 + 642513 — 158453903 + 7128712323 + 923

up to a constant factor.

Remark 6.1 By direct computation, we find that

(3—5sr) \  5(—45+ 11sr) (39 —sr) ,)°
P( 2 )T 52 ST

This means that

(83— 5sr)  (5(=45+11sr) 1/ LB
72 b 1152 2 216 !

is a point on the trielliptic curve s*> = P(t) on (s,t) plane.



Beal'V
85 HAYYHBIE BEJIOMOCTU Ne13(68). Beimyek 17/1 2009

The polynomial fj is regarded as the discriminant of the complex reflection group No.27.
In particular, f; is obtained as the determinant of the matrix

T 21’2 5!13'3
73 o5 (1442123 — 3) 155 (6402825 — 9388x123 + 36600x7x}
M = —19872x5 — 28x3x3 + 307w 973)
r5 1z (—1920aiwy + 8724223 —z11(65920282, — 8870922123 + 288612073
+1641625 + 139z, 23) +367632x5 — 269225 w3 + 2053311 T973)

It can be shown that fy coincides with the polynomial gk13 in my notation by a weight
preserving coordinate change in the notation of my note. We define vector fields Vg, Vi, V5
by

Vo Ory
Vi =M axg
Vy Oy

Then Vj, Vi, Vs form generators of the logarithmic vector fields along the set fo = 0 in the
(21, 22, x3)-space. By direct computation, we have

1
Vi, Va] = %(32009:% — 164122322 — 180562125 — 8022w3 — 30Tx925) V)

8 1
_EWM — 41022325 + 720923)V; — azl(&?f — T3x5) Vs

We consider the system of differential equations

U U
Vil Viu | = 4; | Viu (j=0,1,2)
Vou Vou

where Ay, Ay, Ay are matrices of rank three defined as follows.

A0={{s0,0,0},{0,3+s0,0},{0,0,4+s0}};
A1={{0,1,0},{1/2099520% (320* (1+1728%h1-4*s0) * (3+864*h1+s0) *x1~6-
120% (47+58752xh1-280%*s0) * (3+864*h1+s0) *x1~4*x2+36* (2115+
2967840%h1+679311360%h1°2-15870%s0-2515104*h1*s0-
6125*%s072) *x1~2%x2~2-3888%* (15+30240*h1+7464960%h1~2-175*s0+
28512*h1*s0) *x2~3+45% (3+864*h1-35%s0) *x1*x3) ,-1/810%x1* ((55+
42768%h1+40%*s0) *x1~2-3% (255+83376*h1+175*s0) *x2) ,-1/6xh1*(x1~2-
6%x2)},{1/656100% (-25280%* (1+1728*h1-4*s0) *(3+864*h1+s0)*x1"7
+120% (9879+16458336%h1+3920596992*%h1~2-42907*s0-16232832*h1*s0-
17560%s072) *x1~5*x2-36%* (123660+210094560*h1+50250378240%h1~2-
721860%50-210720096%h1*s0-308135*%s072) *x1~3*x2~2+1944 % (345+3546720*h1+
992839680%h1~2-14815*s0+6258816%h1*s0-5775%s0"2) *x1*x2~3-45% (147+
42336%h1-1625%s0) *x1~2%x3-3645% (5+1440%h1+44%s0) *x2*x3) , (4% (316*(-15+
25704xh1+10%s0) *x1~4-3%(-16645+15303168*h1+8125%s0) *x1~2*x2-2430%* (56+
1440%h1-11%s0)*x2°2)) /2025, (x1* (2% (-85+42768*h1-20%s0) *x1~2-3%(-715
+166752%h1-175%s0) *x2))/1620}};
A2={{0,0,1},{1/656100% (-25280%* (1+1728*h1-4%s0) * (3+864*xh1+s0) *x1~7+120* (9879+
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16458336%h1+3920596992%h1~2-75307*s0-16232832%h1%s0-17560%s0"2) *x1~5%x2-
36%(123660+210094560%h1+50250378240%h1~2-1275765%s0-210720096%h1%*s0-
308135%s072) *x1~3%x2"2+1944* (345+3546720%h1+992839680%h1~2-3530%s0+
6258816%h1%*s0-5775%s0"2) *x1%x2~3-45% (147+42336%h1-3785%s0) *x1~2%x3-
6075% (3+864xh1-35%s0) *x2*x3) , 4% (632% (15+12852%h1+5%s0) *x1~4-3% (24375+
15303168%h1+8125%s0) *x1~2%x2-2430% (-33+1440%h1-11%s0) *x2°2) /2025, x1* (2%
(5+42768%h1-20%s0) *x1°2-3% (15+166752%h1-175%s0) *x2) /1620},{1/820125% (4%
(1997120% (1+1728%h1-4%s0) * (3+864%h1+s0) *x1~8-120% (680901+1246968864*h 1+
302650380288%h1~2-3612193%s0-1421635968%h1*s0-1027000%s0~2) *x1~6*x2+
36%(6514065+14746523040%h1+3706696028160%h1~2-67397805%s0-17324851104%h1%
s0-16957205%s072) *x1~4%x2~2-972% (-235065+392096160*h1+132420925440%h1"~2
-3712385%s0+1286813088%h1%s0-1072500%s0"2) *x1~2%x2~3+1574640%* (5+1440%h1
-11*s0) * (-5+8640*h1+33*s0) *x2~4+45* (4503+1296864*h1-144155*%s0) *x1~3%x3+
3645 (740+213120%h1+5891%s0) *x1*x2%x3) ) , -16% (49928% (-25+60048%h1) *x1"5-
192% (-44815+84795282%h1) *x1~3%x2-1620% (4469+1982880%h1) *x1%x2"2
+180225%x3) /10125, -8% (632% (-10+6426%h1-5%s0) *x1~4-3% (-16250+7651584%h1-
8125%s0) *x1~2%x2-2430% (22+720%h1+11%s0) *x2°2) /2025} };

Remark 6.2 Ay, Ay, A3 contain parameters sqo, hi. The determination of Ay, Ay, Az was
accomplished by Masayuki Noro (Kobe Univ.).

The case so = 3, h1 = —z1;

In this case the monodromy group of the system of differential equations becomes Gajgp-
This case is treated in [6].

The case s = —3, hy =0

In this case there is a quotient of the system above. In fact,

Viu = 021 (1327 — 16229)u
u u :

is a quotient of the system V;u = A;u (7 = 0,1,2) defined above, where B; (7 = 0,1,2) are
matrices of rank two defined below:

B0={{-3,0},{0,1}3};

B1={{1/162xx1x(13*x1~2-162*x2) ,0},
{(-98592%x1~7+1926304*x1~5%x2-10970316%x1"3*x2"2+17754552*x1*x2"3
-15066*x1~2*x3+30861*x2*x3) /43740, (-1350%x1~3+15390*x1*x2) /43740}};

B2={{0,1},{-1/164025% (4% (-6490640%x1~8+180214176%x1~6*x2-999084132*x1"~4*x2~2+

712058040%x1~2%x2~3+1244595456%x2~4-2995542xx1~3*x3+665577*x1*x2%*x3) ) ,
-4%(511920%x1~4-3948750*%x1~2%x2+4330260*x2~2) /164025}};
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AHHOTaHI/Iﬂ. B pa60Te OpuBeIeHbl PE3YyJibTaTbl, OIMUCBIBAIONINEC AUCKPUMHUHAHT HEIIPUBOANMBIX
KOMIIJIEKCHBIX T'DYIIII OTpazKEeHUsd paHI'a TPH.
KarodyeBblie ciioBa: HEIIpUBOAUMbBIE ypaBHEHUsA, JTUCKPUMUHAHT KOMIIJICKCHBIX I'DYIIII OTPazKeHU .



YIK 519.6
THE MULTIPOLE METHOD FOR CERTAIN ELLIPTIC EQUATION
WITH DISCONTINUOUS COEFFICIENT
S.L. Skorokhodov, V.I. Vlasov

Dorodnicyn Computing Centre of the Russian Academy of Sciences,
Vavilov str., 40, Moscow, 119991, Russia, e-mail: skor@ccas.ru,vlasov@ccas.ru

Abstract. A new analytic-numerical method has been developed for solving BVPs in 3D domains
with cones of arbitrary base for certain elliptic equation with piecewise constant coefficient. The
solution is obtained by the use of special basic functions — the Multipoles, which are costructed in an
explicit form. The method supplies high accurate evaluation of the solution, its derivatives, singularity
exponents and intensity factors near the geometrical singularities — edges and the corner vertex.

Keywords: boundary value problem, domains with cones, multipole method, singularity exponents,
intensity factors.

1 Introduction

We consider boundary value problems (BVPs) for certain elliptic equation with piecewise
constant coefficient in domains with cones of arbitrary base (particularly, with polyhedral
corners), when the surface of discontinuity of the coefficient (interface surface) is a conical
one passing through the vertex of the initial cone. An equivalent statement, which is called
a transmission problem, consists in solving the Laplace equation with so called transmission
conditions on the interface surface [1].

Solutions of such BVPs have singularities at vertices of the cones [2]-[8]. Development of
effective methods for solving these BVPs, including high accuracy computation of the singularity
exponents, became a challenging issue [1], [9]-[13].

In this work we present a new effective analytic-numerical method for high—accuracy compu-
tation of these singularities at cones of arbitrary base (in particular, for polyhedral corners),
when conical interface surface also has an arbitrary base. This method represents a generalization
of the Multipole method, previously developed in [14]-[16] for solving a certain class of 2D and
3D elliptic BVPs in domains of complex shape with geometric singularities of different kinds.
For the case of the Laplace equation, the Multipole method in domains with cones has been
developed in [17]-[19].

The principle underlying our method consists in using a system of basic functions that
conform to the structure of the solution near the conical surfaces of the boundary and interface.
We call these functions Multipoles due to their similarity to ordinary multipoles, known in the
theory of potential [20]. Such systems possess good approximation properties. Most important
is the fact that these basic functions can be expressed in explicit analytic form in terms of
special functions.

By virtue of these features the method proves most effective for precise computation of
exponents at the cone singularity.

The work is supported by RFBR (projects 07-01-00295, 07-01-00503) and by Program Ne3 of Fundamental
Research of the Mathematical Sciences Department of RAS.
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2 Statement of the problem

2.1 Domains X and (2

Let (r,0, ) be spherical co-ordinates of a point x in space R®. Denote by
S*={r=1,0€[0,n], ¢ €[0,27)}

the unit sphere and by B? the unit ball in R®. Points § = 0 and § = 7 on S? are called the
North Pole Py and South Pole Pg, respectively.

Consider two disjoint Lipschitz piecewise smooth contours £ and L;, on the sphere S?, each
divides S? into two domains, one of which contains Pg and another Py. The domain containing
Py and bounded by L (by L;,) is denoted by § (by S;,). Assume that L£;, C 8 and denote
Sex = 8\ Sin; observe that 98., = L U Lyy,.

The domain X C R3 defined by the formula X := {r € (0,00), (6, ¢) € 8} is an (infinite)
cone with base 8, its boundary being the conical surface 0K = {r € (0,00), (0, ¢) € L}.
The domains X;,, K., and their boundaries 0X;,, 0X,., are defined in a similar way, with the
vertex {0} shared by both cones, X = K;,, U X,,, conical surface 9K;, contained in K U {0},
and 0K, = 0K U 0K;,.

Consider an important instance of cone X when it presents a trihedral corner with its three
faces being plane angles with common vertex {0} and with values of the angles being equal
to ma, where o € (0,2/3]. Denote by K this trihedral corner, by 8¢ its base, and by L the
contour of this base. In this instance, the equation of contour L% can be written in the form

T(e+%); pel0, 3,
LY={(0,0):0=0(p), p €[0,2m)}, O(p) = { T(¢); ¢ €[5, ¥, (2.1)
T(e—%); ¢ € [, 2],

with function T (¢) given by the formula

T (¢) = arccos [cos<p/\/m} (2.2)

that involves parameter ¢ = (1 — cosma) (2 + 4cos Wa)_l. It worth to be mentioned that
value 73 of dihedral angle between faces of K are related to the quantity wa by the formula
cosmaw = cos 3 /(1 — cosmf3).

The transmission BVP is being solved in a domain © C X homeomorphic to B* with
Lipschitz piecewise smooth boundary 0f). By definition, boundary 02 consists of the two
disjoint parts: 02 = v U ', where v is a closure of a simply-connected domain on the conical
surface 0K with its vertex {0} being an interior point of v, and I' C X is a simply-connected
domain on a certain piecewise smooth surface. Note that K is an extension of €2 through I'.
Assume that 0K, divides € into two subdomains €2;,, and ... Define v;, = 0K;, N Q and
observe that v, = 0, N 0€,. Note that ~;, is the interface surface within domain 2 where
the transmission conditions are to be set.

Let the surface I' be divided by a Lipschitz piecewise smooth curve or contour into two
domains: D and N; the latter correspond to the boundary conditions (the Dirichlet or Neumann
type) to be set on the corresponding parts of I
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2.2 The formulation of the transmission BVP with mixed Dirichlet — Neumann
boundary conditions

For a function v defined on Q, denote by 1, (by t.,) its restriction to Q;, (to Q). Consider
the following transmission BVP for the Laplace equation in the domain €2

A¢2n =0 in Qinu Awem =0 in Qema (23)

with the transmission conditions on the interface surface

,Qbin Yin = wex } Yin® Hin, al/ wzn "‘/in = Hex 81/ ,Qbex "‘/in ) (24)

where s, and s, are prescribed positive constants, J, being a normal derivative, and with
mixed Dirichlet — Neumann type conditions

Y| =0, Wly=ho, | = hy (2.5)

on the boundary 02 =y UT.
We shall use the notation h(x) defined by equalities

h(z) = hp(z), z € D; h(z) = hn(x), x € N, (2.6)
and notation s defined by the formula
® = Ay, T € Qin; M= Moy, T E ey (2.7)
Transmission problem (2.3)—(2.5) can be rewritten in a generalized statement [6]-[8], [21]-
[24]. In order to do it, Sobolev spaces are introduced, following [23]-[26].

Denote by W3 (€2, v) a subspace of Wy () consisting of functions having zero trace on .

Similarly, define the space WJ(Q,~v U D) as a subspace of W, () consisting of functions with
zero trace on y U D.

Let A be a subdomain of boundary 0f2, and let a be a subdomain of A. Denote by I/IO/21/2(A, a)
a subspace of the Sobolev — Slobodetskii space W21 / 2(A) consisting of functions vanishing a.e.

on a. Only the particular cases of the latter spaces W4/2(yUD,~) and W/2(92, v U D) are to
be employed below. The so called negative space W5 1/2(9€2,v U D) is defined as a conjugate

space to Wa/2(98), v U D).
The boundary data hp and hy in conditions (2.5) are required to belong to the spaces

h@ € 21/2(7 U 97 7)7 h’N € W2_1/2(897 v U D) (28)

A generalized solution of BVP (2.3)-(2.5) is understood to be a function ¢ € Vf/'zl (Q,7)
satisfying boundary condition 1&‘@ = hp and the integral identity

/Q%(w, Vn)dx:/NhNnds

for all test-functions n € I/?/zl(Q, v U D), where the notation (., .) stands for the inner product
in Euclidean space R?, and s is defined by (2.7).
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Solvability of the formulated BVP is guaranteed by the following

Theorem 1. For any hp and hy satisfying (2.8) there exists a unique generalized solution
€ W(Q,7) of the problem (2.3)-(2.5).

It is clear that Theorem 1 admits a standard proof which reduces to the Riesz representation
theorem and follows well-known patterns (see e.g. [24]). Outside the boundary’s singularities,
regularity of the generalized solution of (2.3)—(2.5) is covered by the standard theory of elliptic
BVPs [3], [6], [8], [21], [23]. Namely, the generalized solution is infinitely differentiable at any
interior point x € '\ 7;, as well as at any interior point of . At 7;,, the generalized solution
is differentiable one-sidedly, i.e. on either side of 7;,, as many times as allows the smoothness
of 7i,. Omitting the details, we just mention that regularity of the generalized solution at
boundary points z € D and = € N depends on the smoothness of boundary surface I' and
boundary data hop, hxy.

3 Construction of the system of basic functions (the Multipoles)

3.1 Reduction to a spectral problem for the Beltrami — Laplace operator with
transmission conditions

Our goal consists in constructing a system of functions Wy, (the Multipoles) that possess good
approximation properties and conform to the structure of the solution near the conical surfaces,
which contain singularities (the vertex and edges). The basic functions are defined on the whole
cone domain X; their restrictions to X;, and K., are denoted by ¥y ;, and ¥y .., respectively.
The desired properties of the basic functions require the following conditions to be met:
1) functions W, identically satisfy the Laplace equation in K with transmission conditions
(2.4) on 0K;,; 2) they identically meet the homogeneous Dirichlet condition ¥, = 0 on 9K;
3) they constitute an orthogonal basis in Ly(8).
The Multipoles are represented in the form

Ui(r, 0, 0) = " Up; 0, 9),  p=plk); k=12 ..; (3.1)

restrictions of U(u; 0, ¢) to 8;, and to 8., are denoted by Uy, and by U,,, respectively.
Thus U(u(k); 0, p) = Uy are eigenfunctions with eigenvalues p(k) for the Laplace — Beltrami
operator in domain 8 on the unit sphere

1 0 ( 8U> 1 0%U

o U 1 oU
S sin?@ 92

00

0 90 +pup+1)U =0 in8\ L, (3.2)

with the transmission conditions on interface line L;,, induced by (2.4), and with homogeneous
Dirichlet condition on L:

Ui

= Uex‘ Hin al/ Usin = Hex al/ Uex}Lm ) U‘ = 0. (33)

Lin Lin ’ } Lin L

Denote by W3 (8) a subspace of W} (8) consisting of functions having zero trace on L. A

generalized solution of BVP (3.2), (3.3) is understood to be a function U € Vf/% (8) satisfying
the integral identity

/%(VSU, VSV)ds:u(u+1)/UVds YV e WXS), (3.4)
8 8
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where Vg stands for a tangential component to 8 of the gradient V. Note that an inner product

[U, V]g = /%(VsU, VSV)dS
8

[e]
induces an equivalent norm on W3 (8).

Theorem 2. For a spectral problem (3.4), there exists a denumerable set of genmera-

lized solutions U = Uy, € V([)/21(8), w= k), k=1,2,.... The eigenvalues (k) have no finite
limit points, and p(k) — oo as k — oo. To each eigenvalue p(k) there corresponds at most a

finite number of generalized eigenfunctions Uy € V([)/21(8) The eigenfunctions {U} form a basis
in Ly(8) and W3 (8), which is orthonormal in Ly(8) and orthogonal with respect to the inner
product [ ., .]s.

It is clear that Theorem 2 admits a standard proof following the pattern of [21].

Remark 1. In accordance with Theorem 2, all eigenvalues u(k), k =1, 2, ... can be enumerated
i order of their nondecresing; each multiple eigenvalue should be counted accordind to its
multiplicity. Such renumbering establishes a one-to-one correspondence between eigenvalues
w(k) and eigenfunctions Uy.

3.2 Solution of the spectral problem

In what follows we restrict ourselves to the case of contours £, L;, being star-like on S? with
respect to North Pole, when £ can be represented in the form

L=H00,9):0=20(p), 0(p) € C(=00, +0), 0(p) = 0(p + 27)}

and L;, can be represented in a similar form.
The eigenfunctions of the problem (3.2), (3.3) are constructed using two systems of complex—
valued functions: {u™(u; 0, @) }2°_, and {v™(u; 0, @) }oo_, defined by the formulas:

w™(p; 0, ¢) =P (cos 0) €™ w™(u; 0, ) = P(—cos 0) e, (3.5)

where P7'(t) are associated Legendre functions on the cut [27]. For short, in compli-
cated expressions we reduce the relations (3.5) to u™ (u), v™ (u).

Note that if K is a circular cone, ie. £ is a circumference {# = 6, = const}, then
Re u™(u; 60, ) and ITm u™(p; 0, ¢) are eigenfunctions of the problem (3.2), (3.3) with u = u
being the root of number n(n = 1,2, ...) of the equation P}'(cosfy) = 0. Taking this fact
into account we rename and renumber eigenvalues (k) as p/" and eigenfunctions U (u(k); 6, ¢)
as U™ (0, ) and U™ (0, ¢).

Denoting  restrictions of UM*(6,¢) to 8;u and 8., by UNi.(6,¢) and

UmE (0, @), respectively, let represent the desired eigenfunctions in the form of expansions

n, er

in terms of functions (3.5):

UmE = Re ZZOAnmvliumH(u), A0t =1 A™O = (3.6)

n, in

s = Re " {BIEw ) 4 0 ) | o= (37)
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Observe that functions (3.6), (3.7) with any coefficients identically satisfy the equation (3.2).
Unknown eigenvalues p™ and coefficients A™!* Bm™!£ O™+ iy representations (3.6), (3.7)
should be found from relations (3.3), which unite the transmission conditions on interface line
L, and boundary condition on outer contour L.

We shall make it in the following way. Functions U™*(0, ) are sought as a limit

UIED, ) = Jim UE(M; 0, )

of consequent approximations U™ %(M; 6, o) written in the form of finite sums (3.6), (3.7) with
coefficients depending on the length M of approximation, i.e.

M
UmE(M; 0, ReZA?’li(M)um”, A0 (M) =1, A0 (M) =1, (3.8)
Upes (M; 6, Rez {Bmli M)u™* + C,Z”’li(M)vm”}. (3.9)

Coefficients A™!'* (M), B™'£(M), C/™!%(M) and approximate eigenvalues um* (M) are
determined by substituting U™* (M) into the transmission and boundary conditions (3.3) and
by projecting the result onto the system of trigonometric functions exp (iqy):

(Ui, exvliap)) =0, (Ve (M) = UZE(), explige)) | =0, (3.10)
(5200 QU E (M) [ 00 = 500 OUE (M) [0, expliqe)) =0, (311

where g =m,...,m+M, and (f1, f2)c or (fi, f2)z,, is the inner product in Ly(L) or in Lo(Ly,).
Substituting representations (3.8), (3.9) into relations (3.10), (3.11) we obtain a system of linear
equations with respect to coefficients A™!*(M), B™' (M), C™' (M) :

D™(u)Z = 0, (3.12)

where
T
Z=| A OE(M), B (M), G (M), oy AME(M), B (M), CeME ()

is a vector of the coefficients. Elements of matrix D™(u) of system (3.12) are expressed as
integrals over contours £ or L;, of products of functions (3.5) or there normal derivatives on
Lin; s0, these elements depend only on number m and parameter pu.

In order to find a nontrivial solutions of homogeneous system (3.12), we equate the deter-
minant of its matrix to zero, and in the issue we obtain the relation det D™ () = 0, which
should be considered as a transcidental equation with respect to p. So, eigenvalue p)* (M) is a
root of number n (n = 1, 2, ...) of this equation.

The performed numerical experiments showed that the approximate eigenvalues and eigen-
functions converge to the exact ones. Namely, there hold the relations: 1) for any compact

E C 8 it holds

I ‘Umi M: 6, o) — U™ (8, ‘:0;
Jim | e 025 (036, 9) = U2 6,9

2) for all coefficients in (3.8), (3.9) it holds
ATE(M) — A B (M) — B O (M) — O as M — oo
3) for all eigenvalues it holds p"(M) — prr as M — oo.

Y
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3.3 Computation of integrals of frequently oscillating functions

One of important computational problems arising in the described algorithm is calculation of
elements of matrix D™ (u) of system (3.12); those elements are expressed in the form of integrals
over contours L or L;, of the following type:

/ Pl (cosb(p)) exp(ibp)dp, (3.13)

where () is an equation of the contour; a and b are natural numbers, possibly very large. So,
(3.13) are integrals with frequently oscillating integrand; effective computation of those integrals
is a well-known challenging problem. A special analytic-numerical method has been developed
for computation of such integrals. This method represents integrals (3.13) as exponentially
convergent series involving integrals foﬂ/ ? costcos (Gt) dt and related ones, which we have
computed explicitly via special functions, for whose computation high effective methods have
been developed [28]. Particularly,

a+ [ 1+a—/6”—1’

w/2
/ cos®tcos (Bt)dt =m (1 + a)27'7 [B (1 + 5 5
0

where B(z, y) is Beta—function [27].

3.4 Numerical results

Note, that input data for the spectral transmission BVP (3.2), (3.3) consist, at first, of geometric
data, determined by outer contour L and interface line L;,, and, at second, of mechanical
quantity K = s,/ s

The method of solving this problem described in Sect. 3.2 has been realized for two types of
geometric data. For type I contour £ is L turned to the angle 6 L = {(0, ) : (0, ¢p—9) € L*},
and L;, = LY a;, > . Remind, that contour L is defined by (2.1), (2.2).

For type II contour £ = L%, and interface line L;, = {(0, ¢) : 0 = 6y, Vo }.

The dependence of eigenvalues u{ and u9 on x is given on Fig. la and Fig. 1b,
respectively, for type [ of geometric data and for two variants of parameters:
1) a=5/12,0 =1/6, iy, = 7/12, 2) a« = 1/3, 6 = 1/6, oy, = 1/2. The graphs demonstrate
considerable dependence of eigenvalues on k.

For type II of geometric data with parameters « = 5/12, 6y = 2/3, k = 10 the space
views of the first U] " and the second Us ™ eigenfunctions with eigenvalues p§ = 0.090288
and p9 = 1.453002 are displayed on Fig. 2 and Fig. 3, respectively. The space views represent
2D graphs of the eigenfunctions, in which coordinates (6, ¢) are transformed by stereographic
projection of the sphere S* onto a plane (x;,x2), tangential to S? at the North Pole.

4 The Solution of the Transmission BVP in Domain )

4.1 The Multipoles ¥,

In accordance with Theorem 2, all eigenvalues p* (M) can be enumerated as p(k), k=1,2,...,
in order of their nondecreasing; each multiple eigenvalue should be counted according to its
multiplicity. Thus, there arises respective numeration of the eigenfunctions U[L’"bi(ﬁ, go) as
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U(u(k); 0, ¢) and, as a consequence, respective numeration of the multipoles Wy (r, 6, ¢); this
manner of their numeration had already appeared in (3.1).

If our cone X is in fact a polyhedral angle, then a suitable representation for the Multipoles
can be given. In order to formulate this representation let introduce a new system of spherical
co—ordinates (r, ©, ®) related to an edge of the polyhedral angle.

Let us select a particular edge and define new Cartesian co—ordinates X,Y, 7 with their
origin at the vertex {0} of the polyhedral angle disposed in such a way that the selected edge
lies on axis Z, axis X lies on a face (or its extension), and axis Y is perpendicular to this face
and is directed inside domain X. Radial co-ordinate in the new system (r, ©, ®) coincides with
the above one, and angle co—ordinates are defined by the standard formulas ® = arc tan (Y/X),
© = arccos(Z/r). Denote the relation between old and new spherical co-ordinates by § =
= 6(0, ®), v = ¢(O, ®). Then the desired representation for Uy (6, ) = Vi (©, ®) has the

form

Vi (0, ®) = D! P;km/ﬁ(cos ©) sin mT(ID . (4.1)

Coefficients D} in (4.1) can be computed as an integral over any curve {© = Oy = const} C 8.,:
-1 (7P m®P
D" =2 [Wﬁpu_km/ﬁ(cos @0)] / Uy (9, QO) sin 7 dd,
0

where 0 = 6 (0, ®), v = ¢ (O, P).

4.2 The method of solving BVP
Now we turn to the transmission BVP (2.3)-(2.5) in domain 2 with cones of arbitrary base
as described in Sect. 2. Note that 92 and ~;, may have at most a finite number of edges and

conical points. Since the boundary 9 is Lipschitz, a Sobolev space W3 (D) is defined habitually
as a subspace of W3 (D) consisting of functions having zero trace on 9D. Obviously, the space

WD) is a Hilbert space with the inner product

[u, v; Vf/zl(@)] :/ uvds + / (Vru, Vru)ds,
D D

where Vr stands for a tangential component to I' of the gradient V. In the following theorem,
notation W23/ ?(€2) stands for the Sobolev — Slobodetskii space with the norm, where standard
notations are used (see, e.g. [21], [23], [26]),

1Dg v(x) — Dy vyl

QxQ \x—y\‘l

W52 = s W ()P +

|lal=1

dx dy .

Theorem 3. Let hp € Vf/'zl(D) and hy € Lo(N). Then the generalized solution ¢ € Vf/'zl(Q, v)
in Theorem 1 belongs to W23/2(Q), and

s W2 @) < € (Ilho; WD) + llhas LN )
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with constant C' > 0 depending only on ).

Due to the embedding W?’/ ?(Q) into W}(9Q) the trace on 9 of the generalized solution
(NS W23/2(Q) in Theorem 3 belongs to W, (9€). Denote by H(T') a space of all generalized

solutions ¢ € WQ(Q ) N W3/2(Q) in Theorem 3 with boundary data hp € T/f/}l (D) and
hy € Ly(N). Clearly, Theorem 3 implies that H (I') is a Hilbert space with the inner product

[u, U]H:/ uvds—l—/ (Vru, va)ds—l—/ 0,ud,v ds.
D D N

For u € W, / ?(Q), existence of the trace Vpu € Ly(D) is guaranteed by the embedding of

W23/ ?(Q) into W2 (9€). Notice that existence of trace d,u € Ly(N) is guaranteed only for the
functions v € H(I") by virtue of Theorem 3.
For basic functions {W;} constructed in Sect. 3 it holds

Theorem 4. The traces on I' of the basic functions {¥} form a complete system in H(I')
which is minimal.

Proof of the completeness in Theorem 4 is based on the approximation theorems by F. Browder
[29] for solutions of elliptic PDEs. Theorems [29] can be readily modified to include homogeneous
boundary conditions on some part of the boundary.

A Cartesmn product H(D,N) = o Vf/%(@) X Lo(N) consisting of ordered pairs {a,, a,},
a, € WQ(D), a, € Ly(N), is a Hilbert space with the inner product

o a) (b b o= [ abydst [ (Vea, Veby)ds+ [ abds
D D N

which induces the norm

|%=aw||2&c:/ |aD|2ds—|—/ \VpaD|2ds+/ la|? ds.
D D N

Let L : H(T') — H(D, N) be a linear operator defined as Ly = {w‘ﬁ, 8yw‘N} Vi e H(T).
From Theorem 3 it follows

Corollary 1. The linear operator L is an isometry of H(I') onto 3 (D, N).
For the basic functions {¥}, from Corollary 1 and Theorem 4 follows

Corollary 2. The system {L W} is complete and minimal in 3 (D, N).

Applying Corollary 2, we approximate the solution ¥ (7, 6, ¢) of the BVP (2.3)—(2.5) by a
sequence {¢™(r,0, )} of linear combinations with respect to the first N basic functions Wy

00,00 = lm 000,0), 6000 =3" QN0 p).  (42)

Here coefficients Q,EN) are to be found using the condition of the least square deviation of the
approximate solution 1™ from the boundary function h = {h,, h, } € H(D,N) corresponding
to (2.6) on I': ||Ly™) — h||s¢ — min. This condition leads to the following system of linear

equations with respect to the unknown coefficients Q,EN), where [ =1,2 ..., N:

N
Yo VG =N GL= (LU LU, b= [h LUy
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The method of least squares guarantees the convergence of the sequence L)) in the Hilbert
space H(D,N), whence by Corollary 1 follows the convergence of the sequence ™) in the
Hilbert space H(T'). Now for the sequence of approximate solutions {1)(")}, reference to Theorem

3 completes the proof of its convergence in W; / 2(Q) to the exact solution ¢ € Wy (Q,7)N
AW ().

4.3 Asymptotics near the edges

Turn again to the selected edge mentioned in Sect. 4.1. Introduce a cylindrical system of co—
ordinates related to this edge by the use of the Cartesian XY, Z and the spherical (r, ©, ®)
co—ordinate systems defined in Sect. 4.1. Namely, let Z be the co—ordinate from the above
Cartesian system, ® the co—ordinate from the above spherical system, and p is defined by the
formula 9 = v/r?2 — Z2. Then the desired cylindrical co-ordinate system is (g, Z, ®).

Starting from the view (4.2) of the solution and using representation (4.1) for the multipoles
we derive an asymptotics for the solution of the BVP near the edge with dihedral angle of value
w3 when o — 0, Z — 0:

d 20
U~ Ql/ﬁsing[jl,l Zm=1B 4 } + 92/58111?[32,1 Zwemte } +..

Quantities J;; and Jy; appearing here can be expressed via coefficients of expan-
sions (4.1), (4.2), in particular J;; = 27Y#[T(1 + 1/8)] 7' Q, D}, where I'(x) is Gamma-
function [27].

Note that coefficients @} in expansion (4.2) are named intensity factors at the vertex of the
cone (polyhedral angle) and quantities J; 1, Jo1 the intensity factors at its edge. From what was
said it follows that our method provides computation of all mentioned intensity factors along
with the solution itself.

Fig. 1a. Fig. 1b.

Fig. 1. Dependence of eigenvalues p? and u on s for type I of geometric
data and for two variants of parameters: 1) a« = 5/12, § = 1/6, o, = 7/12, 2) a = 1/3,
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Fig. 2. Space view of the first eigenfunction U’ with parameters a = 5/12,
= 2/3, k = 10 and eigenvalue p? = 0.090288.
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Fig. 3. Space view of the second eigenfunction Uy % with parameters o = 5/12,
= 2/3, k = 10 and eigenvalue pJ = 1.453002.
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METOA MYJIBTUIIOJIEN JJ1d HEKOTOPBIX SJIJINIITUYECKIUX
KPAEBBIX 3A/TAY C PASPBIBHBIM KOS®PUIINEHTOM

C.JI. Cxopoxonos, B.1. Biacos
Boluncantensholii ueHtp um. A A.JopogHuusiHa PAH,
yn. Basunoea, 40, Mocksa, 119991, Poccus e-mail: skor@ccas.ru,vlasov@ccas.ru

Annoramusi. Paszpaboran aHaJIATHUKO-YUCIEHHBIH METOJ PEIIeHHs KPAEBBLIX 3aJad B IIPOCTPAH-
CTBEHHBIX 00JIaCTSIX C KOHYCAMH IIPOU3BOJILHOIO OCHOBAHUSI JJIsI SJUIMITHIECKOTO Y PABHEHUSI C KyCOYHO-
MMOCTOSTHHBIM KO3 durmentoMm. Perrenne 3amadm HaAXOIUTCS ¢ MCIOJIb30BAHUEM CIIEIUAIBHBIX Oasmc-
HBIX (PYHKIMIT — MYyJIBTHIIOJNEH, KOTOPBIE CTPOSITCS B IBHOM Bue. MeTos 06ecrednBaeT BHICOKOTOTHOE
BBIUHCJIEHUE PEIeHUsI, ero MPOU3BOIHBIX, IOKA3aTe/ el CUHIYJISIPHOCTH U KO3((DPUIIMEHTOB NHTEHCUB-
HOCTH BOJIN3M MeOMETPUIECKHX OCOOEHHOCTE — pebep M BEpIIUHBI KOHYCA.

KuaroueBbie citoBa: KpaeBble 3a1a91, 00JIaCTH ¢ KOHYCaMU, METOJ, MYJIbLTUIIOEH, TOKA3aTE/IN CUH-
TYJITPHOCTH, KOI(P(PUIIMEHTHI HHTEHCUBHOCTH.
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GENERALIZED POTENTIALS OF DOUBLE LAYER
FOR SECOND ORDER ELLIPTIC SYSTEMS

A.P.Soldatov
Belgorod State University

Pobedy str., 85, Belgorod, 308015, Russia, e-mail: Soldatov@bsu.edu.ru

Abstract. Second order elliptic systems on the plane are considered. The notion of generalized
potentials of double layer for these systems is introduced.
Keywords: second order elliptic systems, lame system, potentials of double layer, Dirichlet problem.

1 Second order elliptic systems

Let us consider the elliptic system of second order

0*u
E GZJW:(L u:<u17”'7ul)7 1 =2, T2 =Y,

1,j=1

with constant and only leading coefficients a;; € IR™!. In view of the elliptic condition

det (Z aiinAj) £0, A, A ER,
the characteristical polynomial

x(2) =detp(z), p(z) =an + (@12 +azn)z + (g2

has no real roots. Let o, denote a set of all these roots in the upper half-plane.
Let D C C? be a finite domain with a smooth boundary I' = dD. As it’s well known the
Dirichlet problem

ulp = f
isn’t always Fredholm. The first example of this type belongs to A. V. Bitsadze[l|. He noticed
that the homogeneous Dirichlet problem for elliptic system with coefficients (I = 2)

a——a—la—a—Oil
11 = 22 = 1, 12 = G21 = -1 0

in the unite circle has infinitely linear independent solutions.

Later A. V. Bitsadze introduced the notion of the so-called weakly connected elliptic systems
for which the Dirichlet problem is Fredholm. According to modern elliptic theory this requirement
simply implies that the corresponding Shapiro- Lopatinski condition holds|2]. It‘s convenient
to formulate this condition in the following way:.

The elliptic system is weakly connected iff

The work was supported in part by the Russian Foundation of Basic Research (RFBR)(project No. 07-01-
00299) and by the National Natural Science Foundation of China (NSFC) in the framework of the bilateral
project "Complex Analysis and its applications" (project No. 08-01-92208-GFEN).



Beal'y

A P. Soldatov. Generalized potentials of double ... % 104

1876

det [/Rp_l()\)d)\] £0.

The Bitsadze example stimulated the definitions of the various classes of elliptic systems for
which the Dirichlet problem is Fredholm. The most important of them was the notion of strong
elliptic system introduced by M. I. Vishik[3|. They are defined by the condition of positive
definiteness of the matrix )

Z aij)\iAj >0

1,j=1
for all >\’)\2 c R, ‘)\1‘ + ‘)\2‘ # 0.

In this case the matrix p~*(\) is also positive definite, so these systems are really weakly
connected. More restrict condition was introduced earlier by C. Somigliano[4] and is expressed

in the form
a a
a= 1tz > 0.
Q21  A22

The intermediate position between these definitions occupies the notion of the strengthened
elliptic system [5]. By definition this system have to be elliptic and the matrix a > 0. Note
that another classification of elliptic systems in the case [ = 2 is given by Lin Wei|6] and Wu

Ci-Quian|7].

2 Generalized potentials of double layer

Let the elliptic system be weakly connected. As it will be said earlier then the Dirichlet problem
is Fredholm. More exactly the following result is valid [8]. Here and below C°(E) implies the
Holder class U,~oC*(E).

Let T' = 9D be Lyapunov contour i.e. its inner normal n(t) = ny(t) + iny(t) € CTO(T) and
let f € CTOT). Then homogeneous Dirichlet problem has a finite number linear independent
solutions uy, . . ., u, € CTO(D) and there exist a real vector- valued linear independent functions
G, Gn € CTOT) such that nonhomogeneous Dirichlet problem is solvable in CT°(D) iff

(fvgl)zou 1§Z§n7

where

(f.9) = / F()g (b))t

The case of strengthened elliptic system is remarkable as n = 0 for these systems. In other
words the Dirichlet problems for a strengthened elliptic system is uniquely solved.

The main result of this talk is the following: if f € C(I") satisfies the orthogonality conditions
then the Dirichlet problem is solvable in the class C(D).

Our approach is based on using generalized potentials of double layer for the elliptic system.
From the weakly connected property it follows the following lemma: there exists the unique
matriz J € C*! such that

a; + (CL12 + CLgl)J + a22J2 = 0,

o(J) =04, det(ImJ)#D0.
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Recall that o, denotes a set of all roots in the upper half-plane of the characteristical
polynomial x(z) = detp(z), p(z) = a1 + (a12 + a21)z + axnz?. The matrix J is called a
characteristical matrix of the elliptic system. If it is diagonal then the system reduces to [
scalar equations. More exactly the exists an invertible matrix ¢ such that all matrixes ca;; are
diagonal. So we may suggest that J is not diagonal.

Let us put
n1 ()€1 + na(t)6s

12

H(E) =Im[(—&1+ &) (61 + &)Y,

where 1 implies the unit matrix and n is the unit vector of inner normal. Then the integral

Qt,€) =

H(€)7

(Po)) = = [ @t = 2pltidd, e D.

describes solutions of the elliptic system. Note that for H = 1 this integral corresponds to the
classical potentials of double layer for Laplace equation. The following theorem shows that Py
plays an analogous role for the elliptic system.

The integral operator P is bounded C(T') — C(D) and

(Po)* (to) = plto) + / QUtt — to)o(B)|dt, to €T,

Let K imply the integral on the right hand side. Under assumptions n(t) € CT%(T) the kernel
k(to,t) = (t—1t0)Q(t,t—to) belongs to CTO(I'x ") and k(t,t) = 0. So the operator K is compact
in C(I).

Theorem. The exist a finite-dimensional space X C CTO(D) of solutions of the elliptic
system and a space Y C CTO(T') of the same dimension such that each solution u € C(D) of
the elliptic system is uniquely represented in the form

UIP(,O+U0, UOGX,

where ¢ € C(I') satisfies the orthogonality condition (p,g9) =0,g € Y.

If the system s strengthened elliptic then in this representation X =0, Y = 0.

The theorem shows that the Dirichlet problem is equivalent to the following system of
Fredholm integral equations:

90+K90+Z)\iui:fa
1

(megz)zoa izla-"ama

where uq,...,u, and g1, ..., g, are basises of X and Y respectively.

In the case [ = 2 the matrix H({) can be described explicitly. In this case there are only
two possibility for o when (i) o = {11,110}, 11 # », and (ii) o, = {v}. So the exists an
invertible matrix b € C?*2 such that

(i) bJb~! = < ”01 32 ) (i) b = ( g i )
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The case bJb~! = v is excluded as the matrix J is not diagonal. Note that the matrixes

B 10 1 B 0 1 .
T

don’t depend on the choice of b.
In this terms we have:

(i) H(&) = (Im®ws)g(&, v2) + Im[(11 — v2)g (&, 11)g(&, v2) Enl,
(i7) H(&) = (Im*v)g(&, v) + Img* (€, v) Eo],
where g(§,v) = [£](& + v&)
3 Applications to the plane elasticity

The plane elastic medium is characterized by the displacement vector u = (u, us) and by stress

and deformation tensors
o1 O, g1 €
U = 3 ) E = 3 bl
g3 02 €3 &2

_ Ou _On  Om
- Ox; © Oxe  Oxy

They are connected by Hooke law i.e. by linear relation

where

67: 7/ = 1,2, 263

a1 Gy Op
c=af, a=| a ay ag > 0,
Qs Qg Q3

where & = (01,09,03), & = (e1,¢€2, 2¢e3).
If the external forces are absent then the equilibrium equations have the form

00'(1) 4 80’(2)

= 0’
8?171 8?172

where o(;) means j—column of the matrix o. Using the Hooke law we receive the Lame system

0*u 0*u Pu
CLH@ + (CL12 + agl)m + a228—y2 =0

for the replacement vector u with the coefficients a;;, defined by the matrix

a1 Qg O 04

o= a1l a2 - Qg Q3 Q3 Qs
Qg Q3 Q3 Q5

Qyq Q5 Q5 Q9

This system is strengthened elliptic and rang a = 3.
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The elastic medium is called orthotropic if a5 = ag =0, a3+ ay # 0, and isotropic if ay =
ag =0, a1 = ay =2a3+as. We can also point out the special case a5 = ag =0, az+ay =0.
In this case the Lame system reduces to scalar equations

82U1 L a 82’&1 0 o 82’&2 82u2
o1 ——— =
Yox2 TP ayr T TP a2

So this case we put away below.
Let us consider the characteristic polynomial of Lame system

p(Z) :a11+((112—|—a21)z+a22z2 — <p1 P3 )7
P3 P2

where pi(2) = ay + 2062 + az2?, pa(2) = az + 2a52 + az2?, p3(2) = ag + (a3 + ay)z + asz?.
In the case (1) we can put

5 1 ( —p2(v1)ps(ve)  —pa(v1)p2(ve) ) 7

T pa(va)ps(1) — pa()ps(ra) \ —ps(v)ps(re)  pa(va)ps(n)

if one of the following conditions (x)
2 2 _ — 942
a3 < arag, aF < apag, apog = asas, ag(ag + ay) = 20;,

disturbs and

5 1 ( —p1(v2)ps(v1) —p3(v1)ps(ve) ) 7

T pi()ps(va) — pr()ps(r2) \ —pr(v)pi(e)  pi(va)ps(ve)

if one of the following conditions (%)
2 2 _ — 942
a3 < arag, af < aqag, ooy = azag, oq(ag + ag) = 204

disturbs.
In the case (ii) we can put

N | (p2<u>p3<u> ») ) |

~ (W)ps(v) — p2(v)ph(v) 3

—p5(v)  —pa(v)ps(v)

Note that fulfilments of both conditions (x) and (xx) is equivalent to the special case as
ag = 0, asz + ay = 0 when the Lame system is diagonal.
In the orthotropic case the polynomial p; are simplify:

pi(z) = a1 + a322, p2(2) = as + p2?, p3(2) = (a3 + ay)z,

so in this case

_ (ag + ay)™ —pa(v1)(as + ag)re —pa(v1)pa(1n)
b= vip2(v2) — vapa(11) < —(az + )’y pa(va)(az + au)n ) ’

(a3 + ay)! —pi(v2)(as + ag)ry  —(as + ag)?viv,
b= vop1(v1) — vip1(12) < —p1(v1)p1(12) p1() (s + ay)vs ) ’
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respectively to (x), (x*) and

B, = b vt asv?)  (az+ ag) Haz + azr?)?
2T ag? —ap \ (s 4 )’ —v(ay + azr?) ‘

Especially the simple picture we have in the orthotropic case when v = i and oy = ay = 2a3+ay.
In this case

L/
E2:——<i 1.)’ oo Gt

)
& —1 a1 — Q3

and therefor

(10 L (G- 2%
H(f)—<0 1)_'_@( 551521 5%_53)

Another function theoretical approaches for orthotropic Lame system were suggested by R
P.Gilbert|9, 10].

10.

Bibliography

. A.B. Bunagze. O equmHCTBEHHOCTH peleHns 3aa9u JIupuxiie st S/THITHIeCKIX YpaB-

HEHUI ¢ YACTHBIMU NPOU3BOJIHBIMU. Ycrexu MaTeM. Hayk, 1948. 3, N 6, 153-154.

C.A. Hazapos, B.A. IliameneBckuii.  DuuIMOTUYecKHe 3aJa49d B 00JIACTIX C KYCOYHO
riaJikoit rpanureit. M., Hayka, 1991, 336 c.

M.I. Vishik. On strong elliptic systems of differential equations, = Matematicheskiy
Sbornik, 1951. 29, 615-676, in Russian.

C. Somigliana. Sui sisteme simmetrici di equazioni a derivate parziali, Ann. Math. Pure
et Appl., 1894. II, v. 22, 143-156

. ATl Conmaros, C.II. Mutun. O6 ogHOM Kj1acce CUIBHO SJunTrdeckux cucreM Jud-

depenr.ypasa. 1997. T.33, N 8. C.1118-1122.

. H. Begehr, Lin Wei. A mixed—contact problem in orthotropic elasticity, in  Partial

diifferential equations with Real Analysis, H. Begerhand, A.Jeffrey, eds., Longman
Scientific & Technical, 1992. 219-239.

Hua Luo-Keng, Wu Ci-Quian, Lin Wei. Linear systems of partial differencial equations
of second with constant coefficients, Science Press, Beijing, 1979

. A.B. bBuniagze.  Kpaesble 3ajadu Jjis 9JUIMIITUYECKUX YPABHEHUI BTOPOTO MOPSJIKA.

M., Hayka, 1966.

. R.P. Gilbert Plane ellipticity and related problems, Amer. Math. Soc., Providence, Rl,

1981.

R.P. Gilbert, Lin Wei. Function theoretical solutions to problems of orthotropic elasticity,
J. Elasticity, 1985. 15, 143-154,



Beal'V
109 HAYYHBIE BEJIOMOCTN Ne13(68). Beimyck 17,/1 2009

OBOBIIIEHHBII ITIOTEHITUAJI IBOMTHOT'O CJI0A JIJIA
SJIJINIITUYECKNX CUCTEM BTOPOI'O ITOPIJIKA

A.IlI. ConmaroB
Benropogcknii rocynapcTBeHHbIli YHUBEPCUTET,
yn. MNobeapl, 85, benropog, 408015, Poccus e-mail: Soldatov@bsu.edu.ru

Awnnorarnus. PaccMarpuBaioTcst sjumnTudeckue cjiabo cszanubie (o tepmunosorun A.B. Bu-
1aJ13¢) CUCTEMBI BTOPOI'O MOPSIIIKA € TIOCTOSIHHBIME (U TOJIBKO cTapiiuMi) Kodddurmenramu. s s1ux
CHCTEM BBOJMTCS ITOHATHE [TOTEHITUAJIOB JBOWHOIO CJIOS, HE CBSI3aHHOE C (PYHIAMEHTAIbHBIM PEIIEHIEM.
OHO TO3BOJISIET pelyIMoBaTh 3a1a4dy Jlupuxie K 3KBUBAJEHTHON CHCTEMe WHTErpPaJIbHBIX ypaBHEHUI
®pearoabMa Ha TpaHUIE 00JIACTH.

KaroueBbie ciioBa: 3/UIMITHIECKHE CUCTEMbI BTOPOIO IOPSIIKA, CUCTEMBI JIaMa, moTeHmas 1Boii-
HOro cJjiosi, 3agada Jlupuxire.
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SHARING SET AND NORMAL FUNCTION OF HOLOMORPHIC
FUNCTIONS

Jun-Feng Xu
Department of Mathematics, Wuyi University,
Jiangmen, Guangdong 529020, China, e-mail: Ivfeng@mail.sdu.edu.cn

Abstract. In this paper, we use the idea of sharing set to prove: Let F be a family of holomorphic
functions in the unit disc, a; and ag be two distinct finite numbers and a1 + as # 0. If for any f € JF,
E¢(S) = E(S),S = {a1,az2}, in the unit disc, then f is an a-normal function.

Keywords: entire functions, uniqueness, Nevanlinna theory, normal family.

1 Introduction and main results

Let D be a domain in C and let & be a family of meromorphic functions defined in D. The
family JF is said to be normal in D, in the sense of Montel, if each sequence {f,} C F contains a
subsequence { f,,; } that converges, spherically locally uniformly in D, to a meromorphic function
or to oo.(see. [10])

In this paper, we assume that f, ¢ are two meromorphic functions on D and S;, S, are
two sets. We denote F;(S1) C E,(S) by f(2) € S1 = g(2) € So. If E¢(S1) = Ey(Ss), we
denote this condition by f(z) € S; < g(z) € Sy. Similarly, if E¢(S1) = E,(S2), we denote
this condition by f(z) € S; = g(2) € Ss. If the set S has only one element, say a, we denote
f(z) € S by f(z) =a (see [15]).

Schwick|14]| was the first to draw a connection between values shared by functions in F (and
their derivatives) and the normality of the family F. Specially, he showed that if there exist
three distinct complex numbers ay, as, as such that f and f’ share a;(j = 1,2,3) in D for each
f € F, then F is normal in D. Pang and Zalcman [9] extended this result as follows.

Theorem A. Let F be a family of meromorphic functions in a domain D, and let a,b, c,d
be complex numbers such that ¢ # a and d # b. If for each f € F we have f(z) =a < f'(z) =b
and f(z) = c< f'(2) =d, then F is normal in D.

Definition 1.1 (see. [6, 7]) A meromorphic function f is a normal function in the unit disc
D if and only if there exists a constant C(f) (which depends on f) such that

(1= [z fi(z) < C(f),
where f*(2) = |¢'(2)|/(1 + |g(2)|?) is the spherical derivative of f.

In 2000, X.C. Pang [8] considered the normal function by using the condition of share values.
Theorem B. Let F be a family of meromrophic functions in the unit disc, ay, as and as be
three distinct finite numbers. If for any f € F,

Ef(a,-) :Ef/(a,-), ’l = 1,2,3,

The author was supported by the NSF of China (10771121), the NSF of Guangdong Province
(9452902001003278) and Excellent Young Fund of Department of Education of Guangdong (LYMO08097).
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in the unit disc, then there exists a positive M, such that for every f € F, we have
(=121 () < M,

where M depends on a,, as and as.
In fact, from the proof of Theorem B, one can get the following corollary.

Corollary 1.2 Let F be a family of holomorphic functions in the unit disc, a; and as be two
distinct finite numbers. If for any f € F,

Ef(ai) :Ef’(ai)a 1=1,2,
in the unit disc, then the conclusion of Theorem B holds.

Recently, there exist a lot of studies in using the shared set to obtain the normal family(see.
[2, 4, 5]). X.J. Liu obtained a normal function by using the share set S = {a1, as, az} corresponding
Theorem B. Naturally, we ask whether there exists a normal function by using the shared set
S = {ay,ay} corresponding to Corolllary 1.27 In this paper, we study the question and get the
following result.

Theorem 1.3 Let F be a family of holomorphic functions in the unit disc, a; and as be two
distinct finite numbers and a; + ay # 0. If for any f € F,

Es(S) = Ep(S), S ={a,a},
in the unit disc, then there exists a positive M, such that for every f € F, we have
(1= [z fi(2) < M,
where M depends on S.
In the following, we give a example to show the condition a; 4+ ay # 0 is necessary.

Example 1.4 ([5]) Let S ={—1,1}. Set F = {f.(2) : n=2,3,4,...}, where

n+1 n—1
_%

eTLZ

D= : 1},
e I I

fn(2) =
Then, for any f, € F, we have
n’[fn(2) = 1] = f7(z) — L.
Thus f, and f! share S CM, but f,, is not a normal function in D.

From Case 1 in the proof of Theorem 1.3, we can easily get the following corollary.

Corollary 1.5 Let F be a family of functions holomorphic in a domain D, let a be a nonzero
finite complex numbers. If for all f € F, f and f" share S = {0, a} IM, then the conclusion of
the theorem 1.3 holds.

The following example shows that it is necessary that the complex numbers a is finite.
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Example 1.6 Let S = {0,00}. Set F = {e™: n=1,2,...} in the unite disc A, thus f, = €™
and f} = ne™ share S, but f is not a normal function in A.

Definition 1.7 ([11]) Given 0 < a < oo, if there exists a constant C,(f) such that
(1= 121 f*(2) < Calf),

for each z € D, we say that f is an a-normal function in D.

a-normal functions may be viewed as the generalizations of normal functions. If we denote
by N the class of the normal functions in D and denote by N¢ the class of the a-normal
functions in D, it is obvious that
N C N CN*

for 0 < oy <1 < g < 00. The above inclusion relations are strict(see.[12]). Similarly, we can
get the following generalized result.

Theorem 1.8 Let o > 1, and let F be a family of holomorphic functions in the unit disc, a,
and ay be two distinct finite numbers and a, + ay # 0. If for any f € F,

Ey(S) = Ep(S), S={a,a},
in the unit disc, then there exists a positive M, such that for every f € F, we have
(1= [21)ff(2) < M,
where M depends on S.

2 Lemmas

Lemma 2.1 ([9]) Let F be a family of functions meromorphic on the unit disc, all of whose
zeros have multiplicity at least k, and suppose that there exists A > 1 such that |[f®)(2)] < A
whenever f € F and f(z) = 0, f € F. Then if F is not normal, then there exist, for each
0< A<k,

(a) a number 0 < r < 1;

(b) points z,, z, < 1;

(c) functions f, € F, and

(d) positive number p, — 0 such that p;* fo(2n + an) = 9. (&) — g(&) locally uniformly,
where g is a nonconstant meromorphic function on C such that g*(&) < g*(0) = A+ 1.

The normal lemma is for a-normal functions corresponding to Lemma 2.1.

Lemma 2.2 Let F be a family of functions meromorphic on the unit disc, all of whose zeros
have multiplicity at least k, and suppose that there exists A > 1 such that | f*(2)| < A whenever
feFand f(z) =0, f € F. Then if F is not an a-normal function, then there exist, for each
0<A<kandl < a < oo, there exist a sequence of points {z,} in D and a sequence of positive
numbers {pn} such that |z,| — 1, p, — 0, and the sequence of functions

{90(O)} = 0 f (20 + (1 = |22 PuC)
converges spherically and locally uniformly to a non-constant Yosida function in the (-plane.

Remark. The case 0 < A < k is first proved by Chen and Wulan, see [12, 13| for a detail.
We can prove the above lemma by the similar method with [13].
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3 Proof of Theorem 1.8

Suppose, to the contrary, that we can find |z,| < 1 and f, € F such that

9n(2) = fulzn + (1 = |2a]*)%2) (3.1)

satisfy
lim g#(0) = Tim (1 — |z 2)° f4(z0) = .

Hence {g,(z)} is not normal in the unit. By Lemma 2.1, we can find the positive number r,
0 < r < 1; the complex numbers (,, |¢,| < 1; p, — 07 and g, € F such that

Gn(C) = gn(Cn + pnC) = frulzn + (1 — |Zn|2)agn + (1 - |Zn|2)°‘f>n<)

locally uniformly to a nonconstant entire function G(¢) on C.
We know G is a nonconstant entire function. Without loss of generality, we can assume that
G — a has zeros in C. Let (; is a zero of G — a;. Consider the family

Gn(C) —a
(PRI

We claim K is not normal at (. In fact, G({y) = a; and G({) # a;. From (3.1) and Hurwitz’s
Theorem, there exist (,, ¢, — (o and G,,((,) = a;. Then H,({,) = 0. However, there exists
a positive number § such that As = {z € D : 0 < |( — (o] < 6} C D and G(¢) # a1 in As.
Thus for each ¢ € As, G, (¢) # a; (for n sufficiently large). Therefore for each ¢ € Ay, we have
H(({) = oo. Thus we have proved that H is not normal at (p.

Noting that

H={H.(C): Hu(¢) =

H,({) =0= H/(¢) = a; or ay,

and using the Lemma 2.1 again we can find 7,, — 79, 1, — 0 and H,, € H such that

Fn(ﬁ) _ Hn(Tnn:_ nn£> _ Gn(Tn +n/;n£) —
Jo(n + (1= [20*)%C + (1 = [2a*)pu (70 + 1m08)) — a1

(1 - |Zn|2)apn77n

locally uniformly convergence to F'(§) on C', where F' is a nonconstant entire function such that
F*(&) < F*(0) = M. In particular p(F) < 1.

We claim that

(1) F only has finitely many zeros.

(2) F(§) =0« F'(&) = a; or as.

We first prove Claim (1). Suppose (p is a zero of G(() — a; with multiplicity k. If F'(£) has
infinitely many zeros, then there exist k 4+ 1 distinct points &; (j = 1,---,k + 1) satisfying
F(&)=0(=1,---,k+1). Noting that F(£) # 0, by Hurwitz’s Theorem, there exists N, if
n > N, we have F,(§;,) =0 (j=1,--- ,k+ 1) and G, (7, + 7&jn) — a1 = 0. We have

then (p is a zero of G({) — a; with multiplicity at least k + 1, which is a contradiction. Thus
we have proved Claim (1).
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Next we prove Claim (2). Suppose that F'(§,) = 0, then by Hurwitz’s Theorem, there exist
&ny En — &o, such that (for n sufficiently large)

. folzn + (1= |Zn|2)acn + (1 - |Zn|2)apn(7—n + 1nén)) — a1 _
fle= (= ) -0

Thus f,,(zn + (1 = |22]*)%C0 + (1 = |24]?)%pn (70 + 70&n)) = a1 By the assumption, we have

frlz(zn + (1 - |Zn|2)aCn + (1 - |Zn|2)apn(7-n + nng)) = ap Or ag,

hence
F/(€) = T f(zn+ (1= 120)Go + (1= ) (7 + &) = o or

Thus we prove F'(§) = 0= F'({) = a; or as.

In the following, we will prove F'(£) = ay or as = F(§) = 0.

Suppose that F’'(&) = a;. Obviously F' # a;, for otherwise F*(0) < |F'(0)| = |a1| < M,
which is a contradiction. Then by Hurwitz’s Theorem, there exist &,, &, — &, such that (for n
sufficiently large)

Fo(&n) = fr(zn + (1= |Zn|2)aCn +(1 - |Zn|2)apn(7_n + 1nén)) = ar.
It follows that F,(&,) = ful(zn + (1 = |2a]?)%C0 + (1 — |2,]?)*pn(T + 10&n)) = a1 or as.
If there exists a positive integer NV, for each n > N, we have
falzn + (1 — |Zn|2)aCn +(1— |Zn|2)apn(7-n + 1nén)) = as.
Then

. folzn + (1 — |Zn|2)a§n + (1 — |Zn‘2)apn(7—n + &) — a1 _
F(&]) B "h_’ngo (1 - |Zn|2)apn7]n -

it contradicts with F”(&)) = a,. Hence there exists a subsequence of { f,, }(which, renumbering,
we continue to denote by {f,}) satisfying that

Jn(zn + (1= |Zn|2)aCn + (1 - |Zn|2)apn(7-n + 1)) = ai.

Thus we derive

Fl&) = lim 22t L2l G 4 (L= J2al) pn(mn 4 tnn)) — 01 _

e (1 = |zal®)*onnn
which implies F/ = a = F = 0. Similarly, we can get ' = a; = F' = 0. Hence we have proved
claim (2).

Since p(F') = p(F') < 1, then by the Nevanlinna’s second fundamental theorem,

— 1
T(r,F") < N(r, =—— T’F’—a2

1 — 1
— r
"F'—ay

)+ S(r, F')

)+ O(logr) (3.2)
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From Claim (1), we get N(r, =) = O(logr). Thus T'(r, F') = O(logr), it is clear that F is
a polynomial.

In the following, we consider two cases:

Case 1: ajay = 0. Without loss of generality we assume a; = 0. We know that F’ has
zeros, then F' has multiple zeros. We assume deg(F') = n, then T'(r, F') = (n — 1)logr and
S(r,F') = O(1). By (3.2) we get

T(r,F') = (n— Dlogr < N(r, %) +0(1) < (n—1)logr

Thus we derive that F' only has one multiple zeros with multiplicity 2 and F” only has one zero
with multiplicity 1, which yields that n = 2. Set F' = B(§ — &), then F = (B/2)(¢ — &)?,
which contradicts with F' = ay = F = 0. This completes the proof of Case 1.

Case 2: ajag # 0. We first prove F' =0 = F’' = a; or ay. From ajas # 0, we get F' =0 —
F" = a; or ay. Thus we only need to prove F' = ay or az — F' = 0.

Suppose & is a zero of F' — a; with multiplicity m. By Rouché theorem, there exist m
sequences {&,}(i =1,2---,m) on Dsjp = {£ : [§ — &| < §/2} such that F) (&) = ai. Then

fé(zn + (1 - |Zn|2)a<n +(1— |Zn|2)apn(7_n + néin)) = Fé(gm) =a (i=1,2,---,m).

By f and f’ share {a;, a2} CM, we get f’ —a;y only has simple zeros. That is &, # &, (1 <1 #
Jj < m). We obtain

falza + (1 = [2)G0+ (1 = [2a]*) 0 (T + 1&in)) = a1 0r ag (i =1,2,--- ,m).
We claim that there exist infinitely many n satisfying
a2+ (L= |2a)*C + (L= |2a*)*pu(T + M0in)) = a1 (1=1,2,---,m).  (3.3)
Otherwise we may assume that for all n, there exist j € (1,...,m) satisfying
Falzn + (L= 12al*)C+ (1 = |2a]*)*pa(T + iin)) = 2.
We take a fixed number [ € (1,...,m) satisfying (for infinitely many n)
falza + (1 =[2G+ (1 = [20]*) (T + 1hiin)) = az.

Hence

o Sz + (1 — |Zn|2)aCn + (1 — |Zn|2)apn(7-n + Min)) — a1
F(&]) - nh—>nolo (1 . |Zn|2)apnnn

Gy —

= lim = 00,
n—oo (1 - |Zn|2)apn77n

which contradicts with F’(&y) = ay. This proves (3.3). Therefore,

F.(&n) =0, (i=1,2,---,m)
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and &, # & (1 <i#j <m). Asn — oo, we get & is a zero of F' with multiplicity at least
m. This proves F' = a; — F = 0. Similarly we can get F' = a; — F = 0. Thus we have proved

F=0=F'=a or as.

From this we know F’ — a; and F’ — ay only have simple zeros. Suppose that deg(F') = n, then
n=2n-—1)and n=2.Set F' = A({ —&)(§ — &), then F' = A(26 — & — &).

Without loss of generality, we assume that F’(§1) = a; and F'(&;) = as, we get a; + ay = 0.
It is a contradiction.

Thus we complete the proof of Theorem 1.3.
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Abstract. In this paper, we study the uniqueness of meromorphic functions that share three values
or three small functions with the same multiplicities and prove some results on this topic given by G.

Brosch, X. H. Hua and M. L. Fang, etc.
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1. Introduction and Results

It is assumed that the reader is familiar with the usual notations and the fundamental results
of R. Nevanlinna theory of meromorphic function as found in [5].

Let f, g be nonconstant meromorphic functions. We say that a meromorphic function
a(z)(# oo) is a small function of f if T'(r,a) = S(r, ). f N(r,1/(f —a)) = S(r, f), then we say
that a is an exceptional function of f. Moreover, we denote by N(r, f = a = g) the counting
function of those common zeros of f —a and g — a, where zy is counted min{p, ¢} times if
zo is a common zero of f — a and g — a with multiplicity p and ¢ respectively; as usual, by
N(r,f = a = g) the corresponding reduced counting function; and by Ng(r, f = a = g) the
counting function which “counts” only those common zeros of f — a and g — a with the same
multiplicity in N(r, f = a = g). These notations will be used throughout the paper.

Let f, g be two nonconstant meromorphic functions, and let a be a small function of f and
g or a be a constant. We say that f and g share a CM if f —a and g — a have the same zeros
with the same multiplicity; if we ignore the multiplicity, then we say that f and g share a IM.
For the statement of our results, we may need a slightly generalization of the definitions of CM
and IM (see [6],[8]).

In 1997, Hua and Fang proved the following result.
Theorem A[6]. Let f and g be two nonconstant meromorphic functions, and let a;(z) (j =

1,---,4) be distinct small functions of f and g. If f and g share a;(z) (j = 1,2,3) CM, and
share ay(z) IM. Then f and g satisfy one of the following cases.

(i) f=g, (i) F=-G with a(z) = -1, (iii) F + G = 2 with a(z) = 2,

(iv) (F —1/2)(G —1/2) =1/4 with a(z) =1/2, (v)F -G =1 with a(z) = —1,

(vi) (F —1)(G —1) =1 with a(z) = 2, (vii) F+ G =1 with a(z) = 1/2,
WhereFE%%, G=4ne-s and a(z) = P,

Remark 1. From the proof of Lemma 6 and Lemma 7 in [6], it is easy to see that the
conclusion is still true if we replace IM with “IM” in Theorem A.

Project supported by the National Natural Science Foundation(Grant No.10771121) of China, and the
Natural Science Foundation(Grant No.Y6090641) of Zhejiang Province.
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For the meromorphic functions that share three values, G. Brosch proved

Theorem B(see [1] or [11]). Let two meromorphic functions f and g share 0, 1, co CM. If
there exists a finite value a(# 0,1) such that g(z) = a whenever f(z) = a. Then f is a Mobius
transformation of g.

In 2008, two of the present authors proved a result on this topic.

Theorem C(see [15, Theorem 2]). Let two nonconstant meromorphic functions f and
g share 0,1, oo CM. If there e:m'sts a small entire function a(z)(# 0,1,00) of f and g such

that g(z) — a(z) = 0 whenever f(z ) ( ) for p=1,2. Then f and g must satisfy one of the
following ten cases.

(i) f =g, (ii) f = ag, where a(z)(# —1), 1 are exceptional functions of f,

(ili) f —1=(1—a)(g — 1), where a(z)(# 2),0 are exceptional functions of f,

(iv) (f —a)(g — 14 a) = a(l — a), where a(z)(# %), oo are exceptional functions

of f, (V)f=—yg With a(z) = -1, (vi) f+g=2 with a(z) =2,
(vii) (f —3)(g—3) = 1 with a(z) =%, (viil) f-g =1 with a(z) = —1,
(ix) (f —1)(g — )_1W1tha()5 (x) f+9=1with a(z) = 3.

The main purpose of this paper is further to study the uniqueness of meromorphic functions
that share three values or three small functions with the same multiplicities, and to prove the
following three results.

Theorem 1. Let two nonconstant meromorphic functions f and g share 0,1, oo CM. If
there exists a small function a(z)(# 0,1,00) of f and g such that N(r,f = a = g) # S(r, f).
Then f and g satisfy one of the following five cases.

(i) f=g, (ii) f-g=1witha(z) = -1, (iii) f+ ¢ =1 with a(z) = 3,

(iv) (f = 1)(g — 1) =1 with a(z) = 2,

(f(2) = LGEEEL, () = e,
where ~y(2) is a nonconstant entire function, and a(z) # —1,1/2, 2.

Let f be a meromorphic function, let a be a small function of f or be a constant, and let

p be a positive integer. We denote by f(zo) ® ¢ that 20 is a zero of f — a with multiplicity p.
By the above Theorem 1, we can prove the following result which generalize the small function
a(z) in Theorem C from entire to meromorphic, and is also a great improvement of Theorem
B. In order to avoid needless duplication, we shall omit the details of the proof of the following
Theorem 2 in this paper.

Theorem 2. Let two nonconstant meromorphic functions f and g share 0,1, oo CM. If
there exists a small function a(z)(# 0,1,00) of f and g such that g(z) — a(z) = 0 whenever

f(2) ® a(z) for p=1,2. Then the conclusion of Theorem C still holds.

From Theorem 2, we can immediately obtain the following result which improves and
generalizes Theorem A.
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Theorem 3. Let F' and G be nonconstant meromorphic functions, and let a;(2)(j =
1,2,3,4) be distinct small functions of F' and G. If F' and G share aj(2)(j = 1,2,3) CM,
and if G(z) = aq(z) whenever F(z) = aq(z). Then f and g satisfy the conclusion of Theorem

C’LUh@TEf:Falaz as g:G a1 4243 gnd q = 94=01d2-d3
’ F—as3 as—a1’ G—a3 az—ay as—asz az—ay

2. Lemmas

Lemma 1 (see [16]). Suppose that fi, fo, -+, fn (n > 3) are meromorphic functions which
are not constants except for f,,. Furthermore, let > fi(z) = 1. If f.(2) #0, and
j=1

DN /) + n—l}jN rf;) < A+ o(D)T(r, fi)

wherer € [Lk=1,2,--- n—1and A < 1, then f,(z) = 1.

Lemma 2(see [16]). Let fi, fo be nonconstant meromorphic functions and ¢y, co, c3 be non-
zero constants. If ¢ f1 + cofs = c3, then

T(r, f1) < N(r,1/f1) + N(r,1/fo) + N(r, f1) + S(r, f1).-

Lemma 3(see |6, Lemma 5]). Let f and g be two nonconstant meromorphic functions that
share 0,1,00 CM. If f # g, then for any small function a(z)(#£ 0,1,00) of f and g, we have

1
N(g (7’, m) +N(3 (T,

) = st

3. The Proof of Theorem 1

We suppose first that f # g. Since f and g share 0,1,00 CM, by the second fundamental
theorem due to R. Nevanlinna, we have

(1+o(W)T(r, f) < N(r,f)+N(r j) N(r, 75)
< N(r,g)+ N(r, 5) N(r, ﬁ) < (34 0(1))T(r,g). (3.1)
Similarly, we obtain
(1+0(1)T(r,g) < 3+ o(1))T(r, f). (3.2)
From (3.1) and (3.2), it follows that
(r, f) = 5(r.9) (3.3)

Set
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If ¢ # 0, then from (3.3), (3.4), the fundamental estimate of the logarithmic derivative, and
the hypothesis that f and g share 0,1, 00 CM, we have

T(r,p) =S50 f) +5(r,9) =5, f). (3.5)
Since f and g share 0, 1,00 CM, thus by (3.4) and (3.5) we deduce that

N(r.f=a=yg) < N(r,1/¢)+S(r f) <T(r, )+ S(r, f) = S(r, f),
which contradicts the hypothesis of Theorem 1. Hence, we have ¢ = 0, namely

f'(f—a) _g'(g—a)

fif=1  glg—1)
Noting that f and g share 0,1, 0o CM, thus there exist two entire functions o and ( such that

f_ooo =1 5
g e, ;;t:—I'—— €. (3.7)

Since f # g, by (3.7) we can deduce that e® # 1, ¢® # 1 and ¢~ #£ 1. Set v := 8 — «, then
from (3.7) we have

(3.6)

el —1 e P -1
f:ﬁ’ 926_7_1- (3.8)
Rewriting (3.6) as
f g ) <g’ f’)
1—a — =a|l=——-=|. 3.9
= (f -1 g-1 g f &9
By (3.7) and the fact that o = 3 — 7, we obtain
o f21_
L = d
p e’ = e’, (3.10)
from (3.10), it follows that
/ / / /
§_%:g'_y, _ffil_gg_lzgh (3.11)
Substitution (3.11) into (3.9) gives
B =ay. (3.12)
From (3.8) and (3.12), we have
Jav' _q —Jay _ 1
e e
— - e — q
f=t g= (313)

We now claim that [a(z) + 1][a(z) — 3][a(z) — 2] = 0 if and only if f and g satisfy one of the

cases (ii)-(iv) of the conclusion of Theorem 1, and thus f is a Mébius transformation of g.
In fact, if a(z) = %, then from (3.12) we have v = 23 + ¢, where ¢ is a constant. Thus, by
(3.7) and the fact that a = § — 7, it follows that

—1
= =l = eCf : (3.14)
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f(20) = g(20) = a(zo (7é 0,1, 00), which and (3.14) imply that e = 1, and thus we obtain from
(3.14) that (g — f)(¢+ f —1) =0, that is f + g = 1. Similarly, if a(z) = —1 or a(z) = 2, then
from (3.7), (3.12), the fact @« = 3 — ~, and the hypothesis of Theorem 1, we can also obtain
that f-g=1or (f —1)(g — 1) = 1, respectively.

On the other hand, suppose that there exist four finite complex numbers ¢; (j = 1,2, 3,4)

such that f = Zlgif, where ¢jcy # coc3. By this and (3.13) we get

Noting that N(r, f = a = g) # S(r, ), we can deduce that there exists a point zy such that
a(
f)

23+ 4 — 20—y = ceV S ¢ (5 — cl)e‘f '+ (c3+ 64)6-[ @'
—cqe O (o) 4 e)eY 4 (¢4 — ca)e. (3.15)

We note first that 7 is not a constant. Otherwise, from (3.12) we know that [ is also a
constant, and thus by (3.8) we can deduce that f is a constant, a contradiction. So from this
and the fact that a(z) # 0, 1, we can also derive that both v — [ @y’ and [ a7’ are not constants.
In the sequel, by repeatedly applying Lemma 1 to equality (3.15) and its modified forms, and
noting the fact that cicqy # cocs, and that a(z) # 0,1, we can prove that one of the following
cases holds.

(a) ¥ — 2 [ @y’ = constant, that is a(z) = 3,

(b) 2y — [ a7/ =constant, that is a(z) = 2, and

¢) v+ [ ay =constant, that is a(z) = —1.

For this purpose, we shall divide our argument into two cases.

Case 1. A:=2c3+c¢4y—2c9 —c1 =0.
From (3.15) we have

1 4 (es—c)e T (es+en)el Y — e H O (e e)eT + (s —e)e™ = 0. (3.16)

We now need to consider the following seven subcases.
Subcase 1.1. cicy(es — c1)(e3 + ¢q)(c1 + e2)(cy — ) # 0. Rewrite (3.16) as

1 2'y [ ay _'_ —C el Jay + Gzt ¢y 'Y+fa’Y ¢4 ef‘wl _ Meh =1. (317)
Co — Cy Co —Cy C2—C4 2= G €2~

Suppose that v+ [ ay’ # constant. Noting the fact that v — f ay', [ cw , and v are all not
constant, so we can get by applying Lemma 1 to (3.17) that —%— po— 27_/ ®" =1, and thus from
(3.17) it follows that

B Aprfay BTG o errtfar - ey = (3.18)
c1+ ¢y 1+ ¢ C1 + Co

By Lemma 1 and (3.18), we get — %~ e~2*/ e = 1. From this and (3.18) we get [ay =
constant, a contradiction.

Suppose that v+ [ ay’' = constant. Then we must have 2y — [ ay’ # constant. Otherwise,
we shall find that 7 is a constant, which is impossible. Thus, from (3.17) and Lemma 1 we get

EZJE et/ =1, and thus again from (3.17) and Lemma 1 we have

A S f BT A Joy - A e = (3.19)

Cl+02 Cl—l-CQ Cl—l-CQ
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Noting the assumption v+ [ a7’ = constant, so we must have —2v + [ ay' # constant. By
applying Lemma 1 to (3.19), we deduce that v — [ ay’ = constant, this is also a contradiction.
Therefore, the subcase 1.1 can not occur.

Next, we can use the similar method to deal with the following six subcases: ¢; = 0; ¢4 =0
but C1 §£ 0, C3 — C1 — 0, but C1C4 % 0, C3+ 4 = 0, but 0104(03 — Cl) % 0, Cc1+Cc = 0, but
creq(ez — c1)(e3 + ¢q) # 0; ¢ — ¢q = 0. For the sake of simplicity, we omit the details.

Case 2. A:=2c3+ ¢4y —2c0—c1 #0.
In fact, we shall verify that the case 2 can not occur by dividing it into five subcases. In
case 2, from (3.15) we have

cl_ c3+ ¢y C4 —rf . ClFCo 04—02_
J eJaor _ Aoty eV + T =1

A A A

If crea(es — cr)(es + ca)(er + c2)(ca — c2) # 0, then by (3.20) and Lemma 1, we can get a
contradiction by noting that ~, [y’ and v — [ay’ are all not constants. So we know that at
least one of the six numbers is zero.

Next, we consider the following five subcases.

Subcase 2.1. ¢; = 0. In this subcase, we have cycs # 0. By (3.20) we obtain

a’y_‘_

C—/ie”‘-f ay 4 © (3.20)

€3 _f[a €3+ ¢4 Co iy €2 €y —Co _
AI’Y+ y el @ Ze'vf“/_zew_,_ 1 gl

If ¢3+ ¢4 =0, then ¢4 = —c3 # 0. So, from (3.21) and Lemma 1 we get ¢y — ¢y = 0, and
thus a contradiction.

If c3+ ¢4 # 0, then we must have ¢; # 0. Otherwise, by applying Lemma 1 to (3.21), we
can get a contradiction. Now again by (3.21) and Lemma 1 we get ¢4 — co = 0, and thus a
contradiction . Thus we have ¢; # 0.

We can easily dealt with the other four subcases ¢4, =0;¢c3—¢c1 =0;¢c3+¢c4=0;¢1+¢co =0
by the similar method.

1. (3.21)

In the above five subcases, we have shown that c¢ic4(cs — 1) (c3+¢4)(c1 +¢2) # 0. Therefore,
we can always obtain a contradiction by using Lemma 1 to (3.20) whether ¢4 — ¢o = 0 holds or
not. The proof of Theorem 1 is completed.
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Abstract. Boundary value problems for the system equations of a principal type with constant
coefficients on the plane are studied. The half-infinite domains with noncharacteristic boundary and
finite domains with such property are considered. The representation solutions of this systems through
solutions of canonical elliptic and hyperbolic systems is obtained. Also the index formula for associated
problems in Holder weighted classes is founded.

Keywords: principal type equations, noncharacteristic boundary, index formula, function theoretical
approach, canonical systems of first order.

1 Integral representation

On the (z1,77) - plane R? we consider a system of linear partial differential equations

ou ou o, (1)

or; 0w

where u(z) is an unknown [ - vector-valued function and a € R™! is a constant matrix. The
system (1) is said to be of a composite type (principal one [1, 2|) if it’s characteristic equation

det(a —v) =0 (2)

has s; > 1 complex roots with the positive imaginary part and sy > 1 real roots, 2s; + 53 = [.
Let by € C**¥! by € R*>*! be constant matrices such that nonsingular matrix b = (b;|b1|bs)
reduces a to the Jordan normal form

b_lab = dla“g <J17717 ']2>7 (3)

where the block matrixes J, € C%*% Lk = 1 2, are composed from Jordan cells. Here J; has
complex eigenvalues with positive imaginary part and J, € R*?*%2 has only real eigenvalues.
Let ko < 59 denote the maximum of orders of Jordan cells composing .Js.

It is valid the following representation theorem [3].

Theorem 1. Any regular solution u of the system (1) can be represented in the form

u=2Reb® + by, (4)

where ® is a reqular solution of the canonical elliptic system

0P 7 0P

—=J—
8$2 8$1’

()
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and U 1s a reqular solution of the canonical hyperbolic system

ov ov
8—@ = 28—1’1. (6)

Solutions of the system (5) are said to be a J; — analytical functions. It is known [4] that a
general solution of this systems can be represented in the form

O(z) = |:6Xp($2J1,0)8ix1:| (a1 + vas),

where J; = v+ Jyo is decomposition of the matrix J; into diagonal v and nilpotent parts. Here
the s1— vector ¢(z1 + vze) consists from components ¢;(x1 + vjz2), 1 < j < s1, where the
functions ¢;(z) are analytic in the corresponding domain of the complex plane. The similar
representation

B(w) = |esplanan) 5 - | 0(0), 7)

there exists for a s;-vector-valued function ¢ = (¢, 1 < j < s9), where Jo = v + Jpo and
Y;(z) = (21 + vjz2). Note that ); satisfies the hyperbolic equation

oy Oy
Oty Vjaxl, v; € R.

2 Fredholm solvability in the half-infinite domain

Let C*(D) be the space of functions satisfying the Holder condition on the the closed domain
D with exponent 0 < 1 < 1 (and bounded if D is infinite). The space C*"(D) consists of the
functions with partial derivatives in C*"~* n > 1, (C*° = CH). These spaces are Banach
with respect to the corresponding norm. It is convenient to write C*T0" for the class U, CHFem,

If the domain D is infinite we also use the space C*"(D) for the set D = DU{co} considered
as the compact on the Riemann sphere C. These definitions also applies to the classes C*" on
curves I' C C.

Let D be a half-infinite domain on the complex plane i.e. it is a simple connected domain with
smooth boundary I' on the Riemann sphere. So the curve I'" permits a smooth parametrization
z=7(t),t € R, where

v (t) € CH2(R). (8)

We consider a boundary value problem
Cu= fonT, (9)

for the system (1) where C'is a (s1 + s2) X [ matrix-valued function, and f is a (s1 + s2) vector-
valued function on I' = @D. This problem is considered in the class C*!'(D) of solutions (1)
such that the functions ® and ¥ belong to this class in the representation (4). More exactly we
say that the vector-valued function ¥ defined by (7) belongs to the class C*! if the components
of belong to the class C*2T17J#  j =1 ..., sy, as functions of one variable. For brevity it is
assumed here that J, consists from one Jordan cell, in the general case this definition is regarded
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with respect to each Jordan’s block of J5. In what follows it is assumed that the characteristics
21 + vjre = const of the system (6) don’t tangent of the curve I', i.e.

Rey/(t) + v;Imy/(t) #0, t€R, 1 <j < s (10)

Moreover it is assumed that I' coincide with a straight line in a neighborhood of co.
It is assumed also, that

C, f € Crh(T) (11)

and
|(b~ )| < const(|z])™* (12)

as |z| — oo, where by (b~'u); we denote the first s; elements of the vector b~ u.

Let us put
_( G \s _( i \s
C_(C2 )82 ’ f_<f2 )52 ' (13)

Without loss of generality we can assume that
det Coby # 0 on I'. (14)

Let us consider

A - Cl(l - bQ(CQbQ)_lcQ)bl. (15)
We say that (1),(9) is a normal type problem if

det A#0 onl . (16)

Theorem 2. Suppose that the conditions (8), (10) for the countour I' and condition (11)
for C, f are fullfilled. Then the problem (1), (8) is fredholmian in CY*(D) if and only if the
normality condition (16) is satisfied, and its index is

1
e=——argdet A| + s . (17)
& r

3 The case of the basic domain

Let the hyperbolic system (7) be such that the nilpotent part Jo of the matrix J; is equal to
0 and the diagonal matrix v = (1;0;;) is composed from two real numbers. Suppose that the
boundary 0D of the finite domain D C C consists of two noncharacteristic smooth curves I'y
and ' that connect two corner points 71 and 7. We consider the following boundary value
problem

Cju = fj on Fj, j = 1,2, (18)

for the system (1), where Cj is a (s1 + s2) x [ matrix and f; is a (s1 + s2) vector.
Let us introduce the weighted Holder space C{(D) = CY(D; 71, 72), A = (A1, A2) € R?, of
all functions ¢(z) such that

p(2) = |z = Mz — m P THeu(2),
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where ¢, (2) € C*(D) and @, (1) = @.(m) = 0. The classes Cy* of differentiable functions are
introduced by induction under the condition

peCf, 0p/ox; € CY_,.

We consider the problem (1),(18) in the class Cy*(D) of solutions (1) such that the functions
® and ¥ belong to this class in the representation (4).

Let v;(t) € C*#]0, 1] be the smooth parametrization [0,1] — I';, j = 1,2 and the complex
numbers ¢o;—1 = 7;(0), g2; = —7;(1) are the tangent vectors at the points 7, 75. By 6; denote
the angle of the sector corresponding to the corner 7;. Evidently, 0; = argq, — argg,, 0 <
argq < 2m, 0 < 0; < 2w, P; =k,r, j = 1,2, (more presicely, P, = 1,3, P, = 4,2), where the
rotation from vector g to ¢. about 7; within domain is clock-wise.

Let us put the functions of matrices

m;(¢) = (Re g, + (Im gx)J1)*(Re ¢, + (Im ¢,)J1) "¢, k,r = P;,

and let be

1 -

331(0 = (62MC - 1)_ A1(7'1)w1(0 + A1(7'1)U1(Ow1(0 )
932(0 = (‘327"'C - 1)_1 A2(72)02(C)w2(o + A2(72)w2(o )

_ 0 m;(C) _ 2y, (7 L
Vi = ( m;l(Z) 0 ) ) wj(g)_e 'Uj(C)_]w ]_172a

Aj = Cj71(1 — bg(Cijg)_leg)bl, ] = 1, 2.

Theorem 3. Suppose that the conditiones (8),(10) for the curves I'y and I'y including the
corner 11,7y are fullfilled. Let C, f belong to C§ and the normality condition

(19)

where

det A;(t) #0, tely, j=1,2 (20)

be satisfied.
Then the problem (1), (18) is Fredholm in Cy*(D) if and only if

det z(¢) #0, Re( =X, k=1,2, (21)
and its index 1s
1 1
e =——argdet(A;(t)A; (1)) — — Z argdet x(() — s1. (22)
m 0 2m — (= —i00
k=12 K
4 Some generalazations

We now consider the problem

C'ju = fj on Fj, j = 1, 2, (23)

in finite domains D, whose boundary 0D consists of two curves I'; and I'y with the corners 7
and 7. We assume that the matrix C(Cy) of order (s; + s2) X [ (s1 x ), and the vector fi(f2)
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of order s; + s2 (s1) are prescribed on I'1(I'y) and f;, C; are belonged Hﬁ’)\, k=3, j=1,2.
Here the curves I'; satisfy conditions (9), (10).

Theorem 4. The assertion of theorem 3 remains in force also for the problem (1), (23),
provided only that A; mean matrices Ay = C11(1 — ba(Ch2b2) " Ch2)b1, Ay = Caby, and the last
term —sy in the formula (22) must be replaced by the s.

We also studied the questions of asymptotics of the solutions near the corner points and the
smoothness of the solutions up to the boundary. We generalized this approach for the systems
of higher order and for a class of the admissible finite domain with piecewise smooth boundary.
If the order of C} in the last problem is not equal to s; + s then we investigated this problem
only for the case ky = 1.

Our study is carried out in the framework of the function-theoretic method [5]. The scheme
of this method is as follows. First of all we express a general regular solution in terms of regular
solutions ® and ¥ and use an anologue of a theorem of Vekua on integral representations of ®
and some notions about W which arises from (7). By substituting that into the corresponding
boundary conditions we reduce the problem to system of integral equations on the boundary
of the domain. Another approuch see in [6].
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Annoramusi. B pabore m3y4daiorcs KpaeBble 3aJadd JJIsl CUCTEM YPaBHEHHUI IIEePBOIO IOPSIKA
[JIABHOT'O THUIIA C MOCTOSIHHBIME KO3(MPUIIMEHTAMHI Ha, IJIOCKOCTH. [Ipn 3TOM paccMaTrpuBaioTcs Kak Io-
JIyOeCKOHEeUIHbIe 00/IACTH ¢ HEXAPAKTEPUCTUIECKONW IPAHUIEell, TAK M KOHEIHbIE 00JIACTU THUIIA JIyHOIKH.
Jlamo mpesicTaB/IeHEe PEIIeHUil STUX CUCTEM Uepe3 perneHus 00j1ee MPOCThIX, TaAK HA3BIBAEMbBIX, KAHO-
HUYECKUX CHCTEM IIE€PBOrO MOPSIKA SJUIMITUIECKOTO U TUIIEPOOJIMIecKOro TUmoB. [losiydensr Takke
dOpMYIIBI IS HHIEKCA COOTBETCTBYIOIINX 3aa4 B BECOBBIX Kjiaccax I émbaepa.

KuroyeBbie ciioBa: ypaBHEHUsI IJIABHOI'O THUIIA, HEXapaKTEPUCTUUECKasi TPAHUIA, KAHOHUIECKUE
CHCTEeMBbI TIEPBOTO TTOPSIJIKA.
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pyanuk MHctutyTa npobsem ynpasienus PAH (r. Mocksa, Poccust)

— npodeccop ITaocuHCKOro KoUTeAKa UCKyccTBa 1 Hayku (r. IllaocuH,
Kuraii)

— npodeccop ITaocuHCKOro KoLTeAKa UCKyccTBa 1 Hayku (r. IlaocuH,
Kuraii)
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yupasienus PAH (r. Mocksa, Poccrist)

— KaHauaatT (pU3UKO-MaTeMaTHYeCKUX HayK, AOIEeHT MOCKOBCKOTO Tro-
CYZAQPCTBEHHOTO WHCTUTYTA 3JIEKTPOHUKH U MaTeMaThkHu (r. Mocksa,
Poccus)

— KaHauJaT (pU3MKO-MaTeMaTHYeCKUX HAyK, CTapIINI HAy4YHBINA COT-
pyaauk  ®usmueckoro wuHcturtyra um. II.H.Jlebegea PAH
(r. MockBa, Poccust)

— mpodeccop PenepasbHOro yHuUBepcurera InTata bawmsa (r. baus,
Bpaszwus)

— mpodeccop Byyit yausepcurera (r. I'yanaounr, Kurait)

— mpodeccop Kwurarickoro HedtsaHoro ynupepcuteta (r. IllanpayH,
Kuraii)

— KaHJUJAT GU3UKO-MaTeMaTUUeCKUX HayK, IOIEeHT daKyJabTeTa MaTe-
MaTtukd u uHGopMaTuKu Cubupckoro denepasbHOTO YHUBEPCUTETA
(r. KpacHosipck, Pocenst )

— mnpodeccop TOKHHCKOTO YHHBEPCHUTETA CEJIBCKOTO XO3sSHiCcTBA U
texHosoruH (1. Tokno, fAmnonus)

— KaHgugaT (GU3UKO-MaTeMaTUYECKHUX HAyK, CTapIInil HayYHBIH
COTPYZHUK BoruucaurenpHoro meHTpa wuM. A. A. Jlopoguunsina PAH
(r. Mocksa, Poccus)

— NOKTOp (UBUKO-MaTeMaTHUUYECKHX HayK, Mpodeccop, 3aBemyroIunil
kadeapoi MaTeMaTHYECKOTO aHaymM3a Besnropozckoro
rocyzapcTBeHHOro yHuBepcurera (r. besropon, Poccust)

— mpodeccop [llanbaynckoro yuusepcuteTa (r. [llanbayn, Kuraii)

— npodeccop ITaocuHCcKOrO KOJTEAKA UCKyccTBa U Hayku (T. [lTaocuH,
Kurait)

— mpodeccop T'OHKOHTCKOTO YHHUBEPCUTETA HAYKH U  TEXHOJIOTHH
(p-u Koysyn, 'oHkoHT)



HHOOPMALMA ANA ABTOPOB

[IpyHMMarOTCsl PyKOIIMCH CTaTe€W, HAIlMCAHHBIE HA PYCCKOM (MJIM HA aHIJIMHCKOM) SI3BIKE,
[0 pa3iIM4yHBIM pas3zienaMm mareMaTuku U ¢usuku. CopepikaHue CTaTell MOMKET COJEepXkaThb Kak
pe3yJbTaThl OPUTMHAIBHBIX HCCIEAOBAaHMI aBTOpa (OB), TaK W TPEACTaBIATH co00il 0030p 1O
BBIOPAHHOW aBTOPOM (aMH) TEME.

Cratbst noKHAa OBITh HAmMCaHa C JIOCTATOYHOH CTENEHBIO MOAPOOHOCTH C TAaKUM
pacy€rom, 4TOoOBbl OBITH MOHATHOM HE TOJBKO Y3KHUM CHEMAJIMCTaM IO BbIOPAaHHOMY aBTOPOM
(aMu) HaIpaBIECHHUIO MCCIIEIOBAHUMN, HO 00JIee IIMPOKOMY KpPYTy, COOTBETCTBEHHO, MAaTEMATUKOB U
¢u3ukoB. Hu B koem ciydae, pyKonHCh HE JOJDKHA IPEJCTABIATh COOOM KpaTKUiMl OTY4ET O
NPOBEICHHBIX MCCIIEOBAHUAX, HANMCAHHBIA B BHJE KPAaTKOro COOOIICHHUS, HE COAEpKaIIui
OIKCaHMs OCTAaHOBKHU 3a/1a4M (COOTBETCTBEHHO, YCIIOBHM IpOBEIEHUs SKCIepuMeHTa). B cBs3u ¢
3THM, PYKOITUCHh JOJDKHA OBITH CTPYKTYpPHpPOBAaHA —  pasJielieHa Ha pa3JieNbl, MPEICTaBISIONINE
OTJCJIbHBIE CMBICIIOBBIE €AMHUIBI TeKCTa. B 1000M cilyyae, pyKOIHUCh JOJDKHA COJIEPKaTh
BBEJICHUE U 3aKJIIOYCHHE.

Bo BBeneHuu AomkHaA OBITH KpaTKO ONKCaHa Mpobiema, KOTOPOH MOCBSIIEHA PYKONMUCH,
OTIPE/ICIIEHO MECTO ITOW MPOOJIEMBI B 001IeM 00bEME (PM3UKO-MATEeMaTHISCKOTO 3HAHUS, JTOJDKHA
ObITh JaHa KpaTKass HCTOpUs BOIPOCAa M ONHUCAH IOJIyYEHHBIH aBTOpOM (aMu) pesynbraTr. B
3aKJIFOYCHHH JOJDKHA OBITh JIaHa KpaTKask XapaKTePUCTHUKA MOJIYYCHHOTO Pe3yJibTaTa U yKa3aHo €ro
3HA4Y€HUE B JJAJIbHEHIIeM pa3BUTHUH T€Mbl PaOOTHI.

Te xe camble TpeOOBaHMSA K BBEICHHIO M 3aKIIOYCHUIO TPEIBSBISIOTCS IS 0030pHOMN
CTaThu, C TOM JIMIIb Pa3HULECH, 4TO €€ copep)kaHUe JOJKHO ObITh MOCBSILEHO OIMCAHUIO BCEil
COBOKYITHOCTH  Pe3yJbTaTOB, OTPAKAIOUIMX COCTOSHHE BBIODaHHOW aBTOpPOM 00JacTH
UCCIIEIOBaHMM, M caM TEKCT J0JDKEH OBITh HaIlMCaH ¢ OOJIbIIeH CTEeNeHbI0 MOAPOOHOCTH.

[TpuHUMArOTCS TaKkKe JUIS IMyOJMKAIIMHM CTAaThH, HOCSIINE METOAMYecKui xapakrep. Ho B
3TOM Cllydae peleHHe O BO3MOXKHOCTU MYOJIMKAalMK TaKOH PYKONHCH MPUHUMAETCS OTAEIbHBIM
pelIeHNeM PEeIKOIUIETHH KypHaa.

Pykomnuce pomxkHa OBITH OQoOpMIIeHA B COOTBETCTBHMM C TPAaJULMSIMU HaMMCaHUS,
COOTBETCTBEHHO, MAaT€MaTHYECKUX M (U3NYECKUX TEKCTOB. B 4YacTHOCTH, B MaTeMaTHYECKHX
TEKCTaX JOJDKHBI ObITh YETKO BBIIEIEHbI TaKHe CTPYKTYpHBIE €IMHMIBI, Kak (HOPMYIHMPOBKHU
OTIpeNieNIeHN i, TeOpeM W JIeMM, CJEICTBHA M 3aMeYaHHii, OTMEUYCHBl Hadala M OKOHYAHUS
JI0Ka3aTeNbCTB.

[TonHbI1 00BEM pyKOIHUCH, KOTOPasi PEJACTABIAET COOON OPUTHHAIBHOE UCCIIEJOBAaHKE, HE
nospkeH npesbimaTh 20 ctpanul popmara A4. OHa omkHa ObITh HamucaHa mpugToM 14pt yepes
nBa wuHTepBajia. OO0bEM 0030pHON CTaThM HEOOXOIMMO 3apaHee OTOBOPHUTH C PEIKOJUIICTHEH
KypHaa.

Pykonuce 10/12kHa COCTOSATH U3 CJIEIYIOIIUX YacTei:

1) OocHOBHOI coOmep)KaTeNbHOW YacTH, MPEACTABIISIEMON Ha PYCCKOM WIIM aHTIMHCKOM
a3pikax. OHa JODKHA HA4YMHATBCS yKazaHunemM HoMepa YJIK TOro Hay4yHOro HampaBlICHHS,
KOTOPOMY IOCBSIIIEHA CTaThs. 3aTeM ClieyeT Ha3BaHHe cTaTbu. OHO JOJDKHO COCTOSTH HE Oojiee
yeM u3 20 cioB. Jlanee NpUBOAUTCS CIIMCOK aBTOPOB CTAThbH, 3aTEM CIIEIYET MOJHOCTbIO OCHOBHAs
4acTb PYKOIIUCH;
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2) a”HHOTaMM Ha pycckoMm s3bike. E€ 00béM He momkeH mpesbimarh 10-12 cTpok,
HanucaHHbIX mpudToM 12pt;

3) crincka Kiro4eBbIX ¢ioB (He 6osee 10-12).
4) mepeBoja 3aryiaBusi, aHHOTAIIMHU U KJIFOYEBBIX CJIOB Ha AaHTJIUHUCKUM SI3BIK;
5) Crircka JIMTCPATYPHBIX UCTOYHUKOB, Ha KOTOPBIC UMCHOTCS CCBUJIKU B TCKCTC PYKOIIMCH,

6) naHHBIX 00 aBTOpAxX CTAaThH C YKa3aHHEM MecTa padoThbl, TOYHOIO IOYTOBOTO ajpeca U
3aHUMaeMOH TOJKHOCTHU. JI0JKHBI OBITh YKa3aHbI aJjpeca 3JeKTPOHHOM OUThl. DT JaHHbIE
HEOOXOJMMO TPEJICTaBUTh TAKXKe Ha AaHIIMKACKOM s3bike. Kpome TOro, nomxkHa OBITH JaHa
JaTUHCKas TpaHCKpUIus Gpamuinii aBTopoB. COOTBETCTBEHHO, JJIS CTaTe Ha aHIIIMHCKOM SI3bIKE,
JOJKHA OBITH JJaHa TPaHCKpUILKS (paMUIINIl aBTOPOB KUPUIUIULIEH;

7) criicka MOJNUCeN K pUCYHKAM, €CJIM OHU UMEIOTCSI B PYKOIIHCH;

8) YKOpPOYEHHOT0 3arojloBKa CTaTbH, COCTOSIIETO HE 0oJiee, 4eM U3 TPEX CJIOB, KOTOPBIM
revaTaeTcsi B KOJIOHTUTYJIAX JKypHaa.

B penmakuuio mnpuceUiaeTcs 3JEKTPOHHBIM BapuaHT pykonucd. OH JOKEH ObITh
noarotosieH B penakrope LaTeX (LaTeX2e, AMSLaTeX). Ilpu 3ToM HYXXHO Takxe MpHUCIATh
¢aiin ¢ pdf-konueill pykonmucu [Uisi TOro, YTOOBI pelakiMs HWMela BO3MOXHOCTh CPaBHEHHUS C
ABTOPCKUM OPUTHUHAJIOM MPU PEAAKTUPOBAHUU.

Ecim B pykoIMcH UMEIOTCS PUCYHKH, TO OHH JIOJDKHBI OBITH IOATOTOBJICHBI B (hopmare
"eps" © COOTBETCTBYMOIINE UM (haiiiIbl HEOOXOAMMO MPOHYMEPOBATH B COOTBETCTBUU CO CITHMCKOM
MOAMKCEN K pUCyHKaM (cM. 11.7).

Oco0ble TpedoBaHNs K 3J1eKTPOHHOMY Ha0opy B peaakrope LaTeX caenyrompmue:
1) HeJb3st UCTIOIBb30BATh BBOIMMbBIC aBTOPAMH HOBBIC HECTAHIAPTHBIC KOMAaH/IbI;

2) BBIKIIOYHBIC (HOPMYJIBI JOJDKHBI OBITH MPOHYMEPOBAaHBI B MOPSIKE MX MOSBICHUS B
PYKOIIUCH B TOM Cllydae, €ClIi Ha HHUX €CTb CCBUIKM B TekcTe. IIpu ucrnonp3oBaHuM pexuma
equation s Habopa BBIKIIOYHBIX (OPMYIT 00s3aTeIbHO YHNOTpeOJeHHEe Ui WX HyMepamuu
U(PPOBBIX METOK, COOTBETCTBYIOUIMX HOMepy ¢Gopmynbl.  Jlomyckaercss HpuUMEHEHHe st
Hymepanuu Gopmya uudp, cHaOKEHHBIX MTpuxaMu. OJHAKO, STUM HYKHO MOJb30BATHCS TOJIBKO
B Cllyyae KpaiiHeli HeoOXOJUMOCTH C Lieiblo 0ojiee TOYHOM Mepenadn cMbIcia Tekcra. B ciyuae,
€ClIi B CTaTb€ HMEIOTCA 4YacTH B BUJE NPUIIOKEHUH, HyMepaluus COJEpXKAaIlIUXCAd B HUX
BBIKJIIOUHBIX (POPMYITT MOXKET OBITh HE 3aBUCUMON OT HyMepaluu OCHOBHOro TekcTa. IIpu sToM B
MIPUJIOKEHUAX PEKOMEHAyeTCsl ynoTpeOseHHe NBOMHONW HyMepaluH, B KOTOPOW MEepBbI CUMBOJ
MO>KET OBITh MPONUCHON OYKBOM MM HOMEPOM HPUIIOKEHUS,

3) TO KC CaMOC€ KacCacTCda JIMTCPATYPHBIX HMCTOYHUKOB, Ha KOTOPBIC MMCHOTCA CCBLUIKU B
TEKCTE PYKOIIHUCH. Hx HY>XXHO OTMCYATh III/I(i)paMI/I B IIOPAAKE IMOABJICHHA B TCKCTC, U HU B KOEM
CJIydac HC UCIIOJIb30BATh MCTKU ApYroro Tuiia.



