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ВВЕДЕНИЕ

25 октября 2009 г. в БелГУ состоялась вторая сессия Российско-Китайского симпози-
ума «Комплексный анализ и его приложения. Первая сессия прошла в Москве в Инсти-
туте проблем управления РАН с 21 по 24 октября 2009 г. Эти сессии были организованы
Российским фондом фундаментальных исследований (РФФИ) и Национальным фондом
естественных наук Китая (НФЕК) в рамках совместного научного проекта «Комплексный
анализ и его приложения» при поддержке ИПУ РАН и БелГУ.
В организационный комитет сессии вошли А. П. Солдатов (Белгород, Россия) предсе-
датель, Ч.-Ч. Янг (Гонконг, КНР), почетный председатель, А. Г. Александров (Москва,
Россия), П.Ху (Шандонг, КНР).

Сессия была посвящена комплексному анализу и его приложениям в теории дифферен-
циальных уравнений, динамических систем, в топологии и геометрии, в теории функций и
пр. Целью симпозиума явилось обсуждение наиболее актуальных проблем комплексного
анализа и его приложений, выявление новых перспектив развития научных исследований,
а также возможностей для совместных научных исследований.

В состав иностранных участников конференции вошли такие крупные математики, как
проф. П.Ху (Hu Peichu – КНР), проф. Ч.Ч. Янг (Chung Chun Yang - Гонконг), проф. Ванг
(Wang Jian Ping – КНР), проф. Ксю (Jun Feng Xu - КНР), проф Киан T. (Tao Qian –
Австралия) , проф. Ш. Таджима (Sh. Tajima – Япония) и др. С обзорным докладом вы-
ступил действительный член польской АН, проф. Б. Боярский. В географии научных до-
кладов представлены также Харьков и Донецк (Украина), Алма-Ата (Казахстан), Ереван
(Армения).

В рамках научной программы с российской стороны приняли участие известные спе-
циалисты в области комплексного анализа и дифференциальных уравнений из многих
научных центров страны, включая Москву, Санкт-Петербург, Новосибирск, Челябинск,
Уфу, Красноярск и университеты центрального региона. В частности, от Московского го-
сударственного университета выступили с докладами профессора В.Н. Чубариков (декан
механико-математического факультета) и Е.В. Радкевич, А.В. Боровских (кафедра диф-
ференциальных уравнений), Вычислительный центр им. Дородницына РАН представлен
проф. В.И. Власовым, приняли также участие проф. А.И. Назаров (Санкт-Петербургский
госуниверситет) и проф. А.И. Кожанов (Новосибирский госуниверситет). В работе симпо-
зиума широкое участие приняли ведущие математики Белгородского госуниверситета –
проф. А.П. Солдатов, проф.А.М. Мейрманов, проф. О.М. Пенкин, проф. А.В. Глушак,
проф. С.А. Гриценко и др. Труды симпозиума представлены в нескольких номерах жур-
нала «Научные ведомости Белгородского государственного университета», включая на-
стоящий выпуск.



УДК 515.17

RESIDUES OF LOGARITHMIC DIFFERENTIAL FORMS

A.G. Aleksandrov

Institute for Control Sciences, Russian Academy of Sciences,

Profsojuznaja str., 65, Moscow, 117997, Russian Federation, e-mail: ag_aleksandrov@mail.ru

Abstract. In this note we give an elementary introduction to the theory of logarithmic differential

forms and their residues. In particular, we consider some properties of logarithmic differential forms

related with properties of the torsion holomorphic differentials on singular hypersurfaces, briefly discuss

the definitions of residues due to Poincaré, Leray and Saito, and then explain an elegant description of

the modules of regular meromorphic differential forms in terms of residues of meromorhic differential

forms logarithmic along a hypersurface with arbitrary singularities.

Keywords: logarithmic differential forms, residue-forms, residue map, regular meromorphic dif-

ferential forms, torsion holomorphic differentials.

Introduction

From the historical point of view, the concept of logarithmic differential form had its origin in
the classical theory of residues. The term "residue"(together with its formal definition) appeared
for the first time in an article by A.Cauchy (1826), although one can find such a notion as
implicit in Cauchy’s prior work (1814) about the computation of particular integrals which
were related with his research towards hydrodynamics. For the next three-four years, Cauchy
developed residue calculus and applied it to the computation of integrals, the expansion of
functions as series and infinite products, the analysis of differential equations, and so on ...

Though it was already transparent in the pioneer work of N.Abel, a major step towards the
elaboration of the residue concept was made by H. Poincaré who introduced in 1887 the notion
of differential residue 1-form attached to any rational differential 2-form in C

2 with simple
poles along a smooth complex curve. Subsequently É. Picard (1901), G. de Rham (1932/36),
A.Weil (1947) obtained a series of similar results about residues of meromorphic forms of degree
1 and 2 on complex manifolds; such developments were associated with cohomological ideas,
leading to the formulation of cohomological residue formulae. Such cohomological ideas were
later pursued by G. de Rham (1954) and J.Leray (1959) who defined and studied residues of
d-closed C∞ regular differential q-forms on S \D with poles of the first order along a smooth
hypersurface D in some complex manifold S, q ≥ 1.

In 1972 J.-B. Poly [24] proved that Leray residue is well determined for any (not necessarily
d-closed) semi-meromorphic differential forms ω as soon as ω and dω have simple poles along
a hypersurface.

In fact, for the first time these two conditions were considered by P.Deligne [11]; he introduced
the notion of meromorphic differential forms with logarithmic poles along a divisor, normal
crossings of smooth irreducible components. In such context this notion was extensively studied
in algebraic geometry and in differential equations by many authors (for example, by Ph.Griffiths,

A.G. Alexandrov partially supported by the Russian Foundation of Basic Research (RFBR) and by the
National Natural Science Foundation of China (NSFC) in the framework of the bilateral project "Complex
Analysis and its applications"(project No. 08-01-92208)



7 НАУЧНЫЕ ВЕДОМОСТИ №13(68). Выпуск 17/1 2009

J.Steenbrink, N.Katz). As a result in 1975, Kyoji Saito [25] considered meromorphic differential
forms satisfied these conditions in the case of divisors with arbitrary singularities. Somewhat
later, his note has been published in a volume [26] of the RIMS-publication series, which is
not accessible to many of those interested in the subject. Saito established the basic properties
of logarithmic differential forms and studied some applications to computing Gauss-Manin
connection associated with the minimal versal deformations of simple hypersurface singularities
of types A2 and A3. In 1980 a paper by Saito [27] was published; it contains an essential part
of materials of the above mentioned works. Among other things, in this paper a general notion
and important properties of residues of logarithmic differential forms are discussed in detail.

At present time the theory of logarithmic differential forms is exploited fruitfully in various
fields of modern mathematics. Among them, one can mention the following:

complex algebraic geometry (the cohomology theory of algebraic varieties and Hodge theory
[12], [10], [29], etc.),

topology and geometry (the theory of arrangements of real and complex hyperplanes [21],
[7], the fundamental group of the complement of a singular hypersurface [19], etc.),

the theory of singularities, the deformation theory and the theory of Gauss-Manin connexion
[26], [4], etc.,

the theory of D-modules, the microlocal analysis, the theory of differential equations [11],
[22], the theory of flat coordinate systems [28], etc.,

complex analysis (the theory of Abel’s integrals [15], Torelli theorems, the theory of primitive
forms and their periods [16], etc.),

the theory of special functions (generalized hypergeometric functions [12], etc.),
mathematical and theoretical physics (the theory of Frobenius varieties and the topological

field theory [20], etc.)
Of course, this list is quite incomplete and can be easily extended by the specialists in

related fields of mathematics.
Following our previous work [3] in this note we give an elementary introduction to the theory

of logarithmic differential forms and their residues. In Section 1 we recall the basic notations,
definitions and properties of logarithmic differential forms along a reduced hypersurface in a
complex analytic manifold. In Section 2 we consider some relations of logarithmic differential
forms and torsion holomorphic differentials on singular hypersurfaces. In the next sections we
briefly discuss the definitions of Poincaré, de Rham, Leray and Saito residues, and apply the
theory of regular meromorphic differential forms to the case of singular hypersurfaces. Among
other things, we obtain a highly elegant description of these modules on an arbitrary singular
hypersurface D in terms of residues of logarithmic differential forms.

1 Logarithmic differential forms

Let U be an open subset of C
m, and let D be a hypersurface defined by an equation h(z) = 0,

where h(z) = h(z1, . . . , zm) is a holomorphic function in U, and z1, . . . , zm is a system of
coordinates. Suppose that D is reduced, that is, h(z) has no multiple factors.

Definition 1.1 ([25], [27]) A meromorphic differential q-form ω, q ≥ 0, on U is called
logarithmic (along a divisor D) if ω and its differential dω have poles along D at worst of
the first order. It means that hω and hdω are holomorphic differential forms on U.
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Remark 1.2 In fact, for the first time the above two conditions appeared in a work by Deligne
(see [11], Prop. 3.2, (i), p.72) who studied meromorphic differential forms with logarithmic poles
along divisors with normal crossings (thus, such a divisor D is the union of its smooth irreducible
components).

In practical computations, the second condition is usually replaced by the condition “dh∧ω
is a holomorphic differential form on U ”; both conditions are equivalent, in view of the identity
d(hω) = dh ∧ ω + h · dω.

Let S be an m-dimensional complex manifold, and let Ω•
S =

(
Ωq

S , d
)

q=0,1,...
be the de Rham

complex of germs of holomorphic differential forms on S, whose terms, locally at the point
x ∈ S, are defined as follows:

Ωq
S,x = OS,x〈. . . , dzi1 ∧ . . . ∧ dziq , . . .〉, (i1, . . . , iq) ∈ [1, m].

Let D be a reduced hypersurface of S, and let h = 0 be an equation of D, locally at the point
x ∈ D. A meromorphic q-form ω is logarithmic along D at x, if hω and hdω are holomorphic.
We denote the OS,x-module of germs of logarithmic q-form at x and the corresponding sheaf
of logarithmic differential q-form on S by Ωq

S,x(logD) and Ωq
S(logD), respectively. Thus, the

OS-module Ωq
S(logD) is a submodule of Ωq

S(⋆D), consisting of all the “differential forms with
polar singularities along D.” Obviously, the sheaves Ωq

S(logD) and Ωq
S coincide off the divisor

D, for all q ≥ 0. By definition,

Ω0
S,x(logD) ∼= Ω0

S,x
∼= OS,x, Ωm

S,x(logD) ∼= 1

h
Ωm

S,x.

In what follows, when we consider the local situation the point x will be taken to be 0 for
simplicity. We shall also assume that U is an open subset of C

m containing the origin.

Example 1.3 Suppose D ⊂ U be a hyperplane or, more generally, a smooth hypersurface
defined by the equation z1 = 0. Then

Ω1
S,0(logD) ∼= OS,0

〈
dz1
z1
, dz2, . . . , dzm

〉

is a free OS,0-module of rank m, generated by the forms dz1/z1, dz2, . . . , dzm. Moreover,

Ωq
S,0(logD) ∼=

q∧
Ω1

S,0(logD), 1 ≤ q ≤ m.

Example 1.4 More generally, let us consider the case whenD is the union of k ≤ m coordinates
hyperplanes in S = C

m. In other words, D is a strong normal crossing. This case considered in
many works published before Saito’s preprint [25]. Then the defining equation of D is written
as follows: h = z1 · · · zk = 0, and an easy calculation shows that

Ω1
S,0(logD) ∼= OS,0

〈
dz1
z1
, . . . ,

dzk

zk

, dzk+1, . . . , dzm

〉
,

and for all 1 ≤ q ≤ m there are the following isomorphisms

Ωq
S,0(logD) ∼=

q∧
Ω1

S,0(logD).

Thus, Ωq
S,0(logD) is a free OS,0-module of rank

(
m
q

)
.
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The following statement is a direct consequence of the basic definition (see [1], or [2], §1).

Claim 1.5 Let D ⊂ U be a reduced hypersurface defined by the equation h = 0. Then for any
q ≥ 1 there exists a natural isomorphism of OS,0-modules

Ωq
S,0

⋂(
(dh/h) ∧ Ωq−1

S,0

) ∼= dh ∧ Ωq−1
S,0 (logD).

Proof. Let us remark at first that there is a natural inclusion

Ωq
S,0

⋂(
(dh/h) ∧ Ωq−1

S,0

)
→֒ dh ∧ Ωq−1

S,0 (logD).

If an element ω ∈ Ωq
S,0 belongs to the OS,0-module on the left side, then it can be represented

in the form ω = (dh/h) ∧ η for some η ∈ Ωq−1
S,0 . Hence, by definition,

(η/h) ∈ Ωq−1
S,0 (logD) ⇒ ω ∈ dh ∧ Ωq−1

S,0 (logD),

and we obtain the desirable inclusion. On the other hand, h·Ωq−1
S,0 (logD) ⊆ Ωq−1

S,0 . Multiplication
by ∧dh induces the map

dh ∧ Ωq−1
S,0 (logD) −→ dh

h
∧ Ωq−1

S,0 .

Obviously this gives us the inverse map to the first inclusion. This completes the proof of Claim.

Lemma 1.6 ([27], (1.1), iii))) Let ω be a meromorphic q-form on U, q ≥ 0, and let D ⊂ U be
a hypersurface as above. Then ω is logarithmic along D if and only if there exist a holomorphic
function g defining a hypersurface V ⊂ U, a holomorphic (q − 1)-form ξ and a holomorphic
q-form η on U such that

a) dim C D ∩ V ≤ m− 2,

b) gω =
dh

h
∧ ξ + η.

Proof. For simplicity let us consider the case m = 2. Suppose that ω is a logarithmic q-form.
Then we have

ω =
a1dz1 + a2dz2

h
, dh ∧ ω =

h′1a2 − h′2a1

h
dz1 ∧ dz2 def

= b(z)dz1 ∧ dz2,

where a1, a2 and b(z) are holomorphic, and h′i = ∂h/∂zi, i = 1, 2. Further,

h′1ω =
h′1a1dz1 + h′1a2dz2

h
=

h′1a1dz1 + h′2a1dz2
h

+
h′1a2 − h′2a1

h
dz2 =

dh

h
∧ a1 + b(z)dz2.

It means that

h′1ω =
dh

h
∧ a1 + b(z)dz2.
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There is analogous representation for h′2ω, and hence for any gω, where g ∈ J(h) = (h′1, h
′
2),

the Jacobian ideal of h. Since D is reduced, there is a function g ∈ J(h) defining a non-zero
divisor in OD/(h) as required in the condition a).

Conversely, the relation b) implies that

hω = dh ∧ ξ

g
+
η

g
,

that is, hω and dh ∧ ω are holomorphic in codimension ≥ 2, hence, in virtue of the Riemann
extension theorem, they are holomorphic everywhere. This completes the proof when m = 2.
The general case can be considered analogously.

Corollary 1.7 ([25]) With the preceding notations the following conditions are equivalent:

1) ω ∈ Ωq
S(logD),

2)
∂h

∂zi

ω ∈ dh

h
∧ Ωq−1

U + Ωq
U for all i = 1, . . . , m.

Corollary 1.8 The sheaves Ωq
S(logD), q = 0, 1, . . . , m, are OS-modules of finite type; the

direct sum ⊕m
q=0Ω

q
S(logD) is an OS-exterior algebra closed under the exterior differentiation d.

As a consequence, Ωq
S(logD) are coherent sheaves of OS-modules for all q ≥ 0.

2 Torsion differentials

In this section we consider simple relations between logarithmic differential forms and torsion
holomorphic differentials on hypersurfaces with singularities. By definition, OD,0 = OS,0/(h)OS,0,
and

Ωq
D,0 = Ωq

S,0/
(
h · Ωq

S,0 + dh ∧ Ωq−1
S,0

)
, q ≥ 1.

Thus, Ωq
D,0 is the OD,0-module of germs of holomorphic differential forms on the hypersurface

D at the point 0 ∈ D. The module Ω1
D,0 is usually called the module of Kähler regular

differentials. The standard differentiation d induces the action on Ωq
D,0 denoted by the same

symbol. Thus, the de Rham complex of sheaves of germs of holomorphic differential forms on
D is well defined:

Ω•
D =

(
Ωq

D, d
)

q=0,1,...
.

For completeness, recall the notion of torsion. Given a commutative ring A with the total
ring of fractions F, and an A-module N of finite type, we consider the kernel of the canonical
map ι : N → N ⊗A F, the torsion submodule of N, and denote it by TorsN ; it consists of all
the elements of N which are killed by non-zero divisors of A.

It is well-known that torsion differentials Tors Ωq
D,0 play a key role in analysis of topology

and geometry of singular varieties. In the case of an isolated n-dimensional singularity (D, 0),
the torsion modules Tors Ωq

D,0 are trivial for all q = 1, . . . , n − 1, while Tors Ωn
D,0 is a finite

dimensional vector space. Furthermore, if D is the quasi-homogeneous germ of a hypersurface
or complete intersection with isolated singularities then dim CTors Ωn

D,0 = µ, where µ is the
Milnor number of D; it is a very important topological invariant of the singularity.

The following examples show that generators of the module of logarithmic differential forms
are naturally expressed through torsion differentials on D.
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Example 2.1 Suppose S = C
2 and consider the hypersurface D given by the equation h =

xy = 0. It is a plane curve with a node. In other words, it is an A1-singularity, a very particular
case of strong normal crossing from Example 1.4. Then

Ω1
S,0(logD) ∼= OS,0

〈
dx

x
,
dy

y

〉
, Ω2

S,0(logD) ∼= OS,0

〈
dx ∧ dy
xy

〉

are free OS,0-modules of rank 2 and 1, respectively. In this case there is also the following
representation: Ω1

S,0(logD) ∼= OS,0〈dh/h, θ/h〉, where θ = ydx−xdy. It is not difficult to verify
that θ ∈ Tors Ω1

D,0. Indeed, taking a non-zero divisor (x+ y) ∈ OD,0 one obtains the following
identities in Ω1

D,0 :

(x+ y)·θ = xydx− x2dy + y2dx− xydy = −(x− y)dh+ 2h(dx− dy) ≡ 0.

Moreover, in this case, Tors Ω1
D,0

∼= OD,0〈θ〉 ∼= C〈θ〉, µ = 1.

Example 2.2 (cf. [30]) With the preceding notations let D ⊂ S be a plane curve with a cusp
given by the equation h = x2−y3 = 0. In other words, it is an A2-singularity. Easy calculations
show that

Ω1
S,0(logD) ∼= OS,0

〈
dh

h
,

2ydx− 3xdy

h

〉
, Ω2

S,0(logD) ∼= OS,0

〈
dx ∧ dy

h

〉

are again free OS,0-modules of rank 2 and 1, respectively. Notice that the numerator of the
second generator of Ω1

S,0(logD), the differential 1-form θ = 2ydx− 3xdy, represents an element
of the torsion submodule Tors Ω1

D,0 ⊂ Ω1
D,0. Indeed, in our case A = OD,0

∼= C〈t2, t3〉, N =
Ω1

D,0, F = C(t), and the mapping ι is given by the normalization of D, that is, x = t3, y = t2.
Thus, ι(θ) = ι(2ydx−3xdy) = 2t2dt3−3t3dt2 = 0, that is, θ ∈ Ker(ι) ∼= Tors Ω1

D,0. Equivalently,
take a non-zero divisor x ∈ OD,0. One then obtains x·θ = 2xydx− 3x2dy = 5hdx− 3xdh ≡ 0 in
Ω1

D,0 = Ω1
S,0/(h·Ω1

S,0+dh∧OS,0). Further calculations show (cf. [30]) that Tors Ω1
D,0

∼= OD,0〈θ〉 ∼=
C〈θ, y ·θ〉, that is, µ = 2.

Proposition 2.3 ([1]) For q = 1, . . . , m, there are exact sequences of OS,0-modules

0 −→ Ωq−1
S,0 /h · Ωq−1

S,0 (logD)
∧dh−→ Ωq

S,0/h · Ωq
S,0 −→ Ωq

D,0 −→ 0,

0 −→ Ωq
S,0/dh ∧ Ωq−1

S,0 (logD)
·h−→ Ωq

S,0/dh ∧ Ωq−1
S,0 −→ Ωq

D,0 −→ 0,

0 −→ Ωq
S,0 +

dh

h
∧ Ωq−1

S,0 −→ Ωq
S,0(logD)

·h−→ Tors Ωq
D,0 −→ 0,

where the homomorphisms of exterior and usual multiplication are denoted by ∧dh and by ·h,
respectively.

Proof. The exactness of the first and second sequences follows directly from the basic
Definition 1.1. Let us consider a differential q-form ω ∈ Ωq−1

S,0 represented an element of the

quotient Ωq−1
S,0 /h·Ωq−1

S,0 (logD). Suppose dh ∧ ω = h·η, η ∈ Ωq
S,0, and set ω̃ = ω/h. It is obvious

that hω̃ and dh ∧ ω̃ are holomorphic, hence ω̃ ∈ Ωq−1
S,0 (logD) by definition. Thus the first

sequence is exact from the left. Evidently it is exact from the right too. In the same way, one
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can easily prove the exactness of the second sequence. The exactness from the left of the third
sequence follows from definition. In view of Lemma 1.6, it is clear that Im (·h) ⊆ Tors Ωq

D,0

because for a non-zero divisor g one has the following chain of implications:

gω =
dh

h
∧ ξ + η ⇒ g(hω) = dh ∧ ξ + hη ≡ 0 ⇒ hω ∈ Tors Ωq

D,0.

Now let take an element ω ∈ Tors Ωq
D,0. By definition, there is a non-zero divisor g ∈ OD,0 such

that g ω = 0. We will denote by g and ω their representatives in OS,0 and Ωq
S,0, respectively.

Then one has g·ω = dh∧ξ+h·η, ξ ∈ Ωq−1
S,0 , η ∈ Ωq

S,0. Since g is a non-zero divisor, the condition
b) of Lemma 1.6 is satisfied. This implies that ω/h = ω̃ ∈ Ωq

S,0(logD), that is, ω ∈ Im (·h).

Remark 2.4 It is well-known [14] that Tors Ωq
D,0 = 0, 0 < q < c, where c = codim (SingD,D)

and SingD is the singular locus of D. On the other side, any reduced hypersurface (or complete
intersection) D is normal if and only if c ≥ 2 by virtue of Serre’s criterion (“R1 and S2 conditions
imply normality”). Hence, when D is normal then the exact sequence of Proposition 2.3 implies
the following isomorphisms

Ωq
S,0(logD) ∼= Ωq

S,0 +
dh

h
∧ Ωq−1

S,0 , 1 ≤ q < c.

It is not difficult to see that the support of Tors Ω1
D is contained in the singular locus

SingD of the hypersurface D. Moreover, there is a system of generators of OD-module Tors Ω1
D

containing at least m− 1 elements.

Corollary 2.5 There are the following long exact sequences of OS,0-modules

0 → Ωq
S,0 + dh

h
∧ Ωq−1

S,0 → Ωq
S,0(logD)

·h−→ Ωq
D,0 → Ωq

D,0/Tors Ωq
D,0 → 0,

0 → dh ∧ Ωq−1
S,0 (logD) → Ωq

S,0 ⊕ dh
h
∧ Ωq−1

S,0 → Ωq
S,0(logD)

·h−→ Tors Ωq
D,0 → 0.

Proof. This is an immediate consequence of Proposition 2.3 and Claim 1.5.

Remark 2.6 The last sequence is very useful in computing the torsion modules in the case
when Ωq

S,0(logD) is a free OS,0-module; it gives us an OS,0-free resolution of the torsion module.
Following P.Cartier [9] a hypersurface D ⊂ S is called Saito divisor or, more often, Saito free
divisor if for some q ≥ 1 and, consequently, for all q, the OS-module Ωq

S(logD) is locally free.
For example, the discriminants of the minimal versal deformations of isolated hypersurface or
complete intersection singularities are Saito free divisors.

3 Poincaré residue

The following construction [15] is a direct generalization of the original Poinacaré definition of
the residue 1-form associated with any rational 2-form in C

2.
Let ω be a meromorphic differential m-form on an m-dimensional complex analytic manifold

S with a polar divisor D ⊂ S. Thus, locally we have a representation:

ω =
f(z)dz1 ∧ . . . ∧ dzm

h(z)
,
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where f and h are germs of holomorphic functions, and h is a local equation of D. By definition,
the Poincaré residue résD(ω) is a meromorphic (m − 1)-form on D whose singularities are
contained in the singular locus SingD ⊂ D. To define this form explicitly, let us note that at
each point x ∈ D \ SingD at least one of the derivatives of h does not vanish:

∂h

∂zi

∣∣∣
z=x

6= 0.

Then the Poincaré residue of ω in a small neighbourhood of x is defined as follows:

résD(ω) = (−1)m−i f(z)dz1 ∧ . . . ∧ d̂zi ∧ . . . ∧ dzm

∂h(z)/∂zi

∣∣∣∣∣
D

.

It is not difficult to verify that this restriction depends neither on the index i nor on the local
coordinates and on defining equations of D. Moreover, the Poincaré residue is holomorphic on
the complement S \D. When D is smooth, one can take h(z) = zm, and then, as usually,

résD

(
f(z)dz1 ∧ . . . ∧ dzm

zm

)
= f(z)dz1 ∧ . . . ∧ dzm−1,

that is, résD(ω) is holomorphic on D. As a result one has the following sequence of sheaves

0 −→ Ωm
S −→ Ωm

S (D)
rés
−−→ Ωm−1

D −→ 0 ,

where Ωm
S (D) denotes the sheaf of meromorphic forms on S having a simple pole along the

divisor D. In particular, one concludes that the germ of every holomorphic (m − 1)-form on
the nonsingular divisor D is a Poincaré residue. It is obvious that this is true globally when the
first cohomology group vanishes: H1(S,Ωm

S ) = 0.

4 Leray residue-form

As remarked in Introduction De Rham and Leray considered d-closed C∞ regular differential
forms on S \ D having simple poles on D, where D is a submanifold of codimension 1 in a
smooth manifold S. In particular, they proved that locally for such a form there is the following
represenation:

(∗) ω =
dh

h
∧ ξ + η,

where ξ and η are germs of regular differential forms on S. In fact, ξ|D is globally and uniquely
determined; it is closed on D. If ω is holomorphic on S \D then the form ξ|D is holomorphic on
D. The form ξ|D is called the Leray residue-form on D; it is denoted by res[ω]. It is not difficult
to see that the definition of the Leray residue-form generalizes the Ponacaré residue described
above.

Similarly to the construction from the end of the previous section, making use of local
representation (∗), for any q = 1, . . . , m one gets (see [23]) the exact sequence

0 −→ Ωq
S −→ Ωq

S(D)
res
−−→ Ωq−1

D −→ 0,
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which is equivalent, since the divisor D is a smooth hypersurface, to the sequence

0 −→ Ωq
S −→ Ωq

S(logD)
res
−−→ Ωq−1

D −→ 0 .

Below we show that a generalization of this sequence to the case when the divisor D has
arbitrary singularities requires more delicate considerations.

5 Saito residue map

In fact, Leray considered d-closed forms on S\D in order to construct a natural homomorphism
of cohomology spaces Hp(S \ D) → Hp−1(D), and then the co-boundary homomorphisms of
homology groups Hp−1(D) → Hp(S \D), the main ingredient of his famous residue-formula.

Furthermore, in 1972 J.-B. Poly [24] proved that the representation (∗) are valid for any
semi-meromorphic differential form ω as soon as ω and dω have simple poles along a smooth
hypersurface D ⊂ S. By definition, a differential form ω is called semi-meromorphic when
locally all its coefficients can be represented as quotient of smooth and holomorphic functions.
Hence, the Leray residue is also well determined for such forms without assumption on their
d-closedness.

Following Saito [27] we describe a natural generalization of the Leray residue for meromorphic
differential forms satisfying the above two conditions for a divisor D with arbitrary singularities,
that is, for logarithmic differential forms in the sense of Definition 1.1.

Let D ⊂ S be a hypersurface, and let the sheaf MD be the OD-module of germs of
meromorphic functions on D.

Definition 5.1 (see [27], (2.2)) The (logarithmic) residue morphism is a homomorphism of
OS-modules

res. : Ωq
S(logD) −→ MD ⊗OD

Ωq−1
D ,

defined locally as follows: taking the representation of the basic Lemma 1.6, for any ω ∈
Ωq

S,0(logD) we set

res. ω =
1

g
·ξ.

Thus, the residue res. ω is the germ of the meromorphic (q−1)-form in the module MD,0⊗OD,0

Ωq−1
D,0 .

Claim 5.2 ([27], (2.5)) Let D ⊂ S be a hypersurface. Then for any q ≥ 1 there exists the
following exact sequence of OS-modules

0 −→ Ωq
S −→ Ωq

S(logD)
res.−→ MD ⊗OD

Ωq−1
D .

Proof. Making use of the representation of logarithmic forms as in the definition of the symbol
res. above, one obtains

res. ω = 0 ⇔ gω ∈ Ωq
S,0 ⇔ ω ∈ Ωq

S,0.

This completes the proof.
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Remark 5.3 In particular, for q = 1 one has

0 −→ Ω1
S −→ Ω1

S(logD)
res.−→ MD

∼= MD̃,

where D̃ is the normalization of D. Moreover (see [27], Lemma (2.8)), if π : D̃ −→ D is the
morphism of normalization, then the image Im (res. ) contains π∗(OD̃) consisting of the so-called
weakly holomorphic function on D, that is, of meromorphic functions, whose preimage becomes
holomorphic on the normalization.

Remark 5.4 By this way we can consider the image of the logarithmic residue res.Ωq
S(logD) as

an OD-module. Indeed, the definition of logarithmic forms implies that h ·
(
Ωq

S,0(logD)/Ωq
S,0

)
=

0. Hence, the multiplication by h· annihilates Im (res. ).

6 Regular meromorphic forms and Saito residue map

We are going to describe the image of the Saito residue map in terms of regular meromorphic
forms for logarithmic differential forms with poles along a divisor D ⊂ S with arbitrary
singularities together with a generalization of the exact sequences from Section 3 and Section 4.

Now we consider the sheaves of OD-modules ωq
D, q ≥ 0, called regular meromorphic differential

q-forms on the hypersurface D. So let X, dimX = n ≥ 1, be the germ of an analytic subspace
of an m-dimensional complex manifold S, and let ωn

X = Extm−n
OS

(OX , Ωm
S ) be the Grothendieck

dualizing module of X.

Definition 6.1 ([18], [8]) The sheaves ωq
X , q = 0, 1, . . . , n, of regular meromorphic differential

q-forms on X are defined as follows: ωq
X consists of all meromorphic differential forms of order

q on X such that ω ∧ η ∈ ωn
X for any η ∈ Ωn−q

X or, equivalently, ωq
X
∼= HomOX

(
Ωn−q

X , ωn
X

)
.

Let us apply this Definition in the particular case when X = D is a hypersurface, that is,
n = m− 1.

Claim 6.2 Let D ⊂ U be a reduced hypersurface. Then res.Ωq+1
S (logD) ⊆ ωq

D for all q =
0, 1, . . . , m− 1.

Proof. Set dz = dz1 ∧ . . .∧dzm. Then with preceding notations one has a natural isomorphism
ωn

D
∼= OD(dz/dh). That is, ωq

D
∼= HomOD

(Ωn−q
D , OD

(
dz/dh)

)
for all q = 0, 1, . . . , n. Then

Corollary 1.7 implies that ∂h
∂zi

·res.Ωq
S(logD)

∣∣
U
⊂ Ωq−1

D

∣∣
D∩U

for all i = 1, . . . , m, or, equivalently,
dh ∧ res.Ωq

S(logD)
∣∣
U
⊂ Ωq

D

∣∣
D∩U

. This completes the proof.
Below we use an equivalent description of the regular meromorphic differential forms ωq

D, q ≥
0, on the hypersurface D obtained by D.Barlet in a more general context (see [8], Lemma 4).
In fact, there is the following exact sequence of OD,0-modules:

0 −→ ωq
D,0

C−→ Ext1
OS,0

(OD,0, Ωq+1
S,0 )

∧dh
−−→ Ext1

OS,0
(OD,0, Ωq+2

S,0 ), q ≥ 0,

where ωq
D,0 ⊂ j∗j

∗Ωq
D,0 and C is induced by the multiplication by the fundamental class of D in

S. Thus, C(v) corresponds to the Čech cocycle w/h such that w = v ∧ dh.
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Theorem 6.3 ([2], §4) Let D ⊂ S be a reduced hypersurface. Then for any q ≥ 1 there is the
following exact sequence

0 → Ωq+1
S −→ Ωq+1

S (logD)
res.−→ ωq

D → 0.

In particular, ωq
D and res.Ωq+1

S (logD) are isomorphic OD-modules.

Proof. It is sufficient to verify the statement locally. In view of Claim 6.2 it remains to prove
that any element of ωq

D can be represented as the residue of a logarithmic q-form.
Let K.(h) be the ordinary Koszul complex associated with h, that is,

0 → OS,0e0
d0−→ OS,0

d−1−→ OD,0 → 0,

where K1(h) = OS,0e0, K0(h) = OS,0 and d0(e0) = h, d−1(1) = 1. Then we have the following
piece of the dual exact sequence

· · · −→ HomOS,0
(K0(h), Ωq+1

S,0 )
d0

−→ HomOS,0
(K1(h), Ωq+1

S,0 ) −→

−→ Ext1
OS,0

(OD,0, Ωq+1
S,0 ) → 0.

Hence, any element of Ext1
OS,0

(OD,0, Ωq+1
S,0 ) can be represented as a Čech 0-cochain (more

explicitly, a 0-cocycle) in the following way

ν/h ∈ HomOS,0
(K1(h), Ωq+1

S,0 ) ∼= C0
(1)(Ω

q+1
S,0 ),

where ν ∈ Ωq+1
S,0 . Choose now an element ν ∈ Ωq+1

S,0 such that

ν

h
∧ dh ∈ Ext1

OS,0
(OD,0,Ω

q+2
S,0 ),

corresponds to the trivial element. That is, ν ∧ dh/h is defined by an element of
d0
(
HomOS,0

(K0(h),Ω
q+2
S,0 )

)
. This means that ν ∧ dh = h · η for some form η ∈ Ωq+2

S,0 . The first
exact sequence of Proposition 2.3 implies that ν ∈ h · Ωq+1

S,0 (logD). Set ν̃ = C−1(ν/h). By

definition, C(ν̃) corresponds to a Čech cocycle ν/h such that ν = ν̃ ∧ dh (take v = ν̃, w = ν
in the above description of ωq

D with the help of multiplication by the fundamental class). This
yields C(ν̃) = ν/h = ν̃ ∧ dh/h, and res. (ν/h) = ν̃. Thus, for any element ν̃ ∈ ωq

D there is a
preimage under the logarithmic residue map represented by ν/h. This completes the proof.

Remark 6.4 In fact, the representation (∗) implies directly that res.Ωm
S (logD) ∼= ωn

D
∼=

OD(dz/dh), in view of the formal decomposition dz/h = (dh/h) ∧ (dz/dh). Further, it is not
difficult to verify that in the case of plane node of Example 2.1 there is natural isomorphisms
res.Ω1

S(logD) ∼= π∗(OD̃) ∼= ω0
D (cf. Remark 5.3). A similar result is also valid in a more general

situation (see [27], Theorem (2.9)).

Remark 6.5 It should also be underlined that there is a far reaching generalization of main
results of this section to the case of complete intersections. In papers [5] and [6] it was developed
the theory of multi-logarithmic differential forms and their residues with applications to the
general theory of multidimensional residue and residue currents on complex spaces.
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Durchschnitten, Math. Ann. 214 (1975), no.3, 235-266.

15. Ph. Griffiths. Variations on a theorem of Abel, Invent. Math. 35 (1976), 321-390.

16. Ph. Griffiths, J. Harris. Principles of algebraic geometry. Pure and Applied Mathematics.
Wiley-Interscience [John Wiley & Sons], New York, 1978.



A.G. Alexandrov. Residues of logarithmic ... 18

17. G.M. Henkin. Jean Leray and several complex variables. In: Selected papers of J.Leray,
vol. III, 1-31. Springer-Verlag and SMF, 1998.

18. E. Kunz. Residuen von Differentialformen auf Cohen-Macaulay Varitäten, Math. Zeits-
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ВЫЧЕТЫ ЛОГАРИФМИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ ФОРМ

А.Г. Александров
Институт проблем управления РАН,

ул. Профсоюзная, 65, Москва, 117997, Россия, e-mail: ag_aleksandrov@mail.ru

Аннотация. В этой заметке излагается элементарное введение в теорию логарифмических

дифференциальных форм и их вычетов. В частности, рассматриваются некоторые свойства ло-

гарифмических форм, связанные с кручением голоморфных дифференциалов на особых гипер-

поверхностях, кратко обсуждаются понятия вычета, данные Пуанкаре, Лерэ и Саито, а затем

приводится красивое описание регулярных мероморфных дифференциалов в терминах вычетов

мероморфных дифференциальных форм, логарифмических вдоль гиперповерхности с произволь-

ными особенностями.

Ключевые слова: логарифмические дифференциальные формы, форма-вычет, регулярные

мероморфные дифференциальные формы, кручение голоморфных дифференциалов.
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Abstract. A wide class of complex dynamical systems can be described by evolutionary processes

given by a vector field with polynomial, analytic or smooth coefficients in phase space. Such systems

are investigated by perturbation analysis of the control and behavioral spaces together with associated

bifurcation sets and discriminants. Our approach is based essentially on the theory of logarithmic

differential forms, deformations theory and integrable connections associated with deformations. Such

a connection can be represented as a holonomic system of differential equations of Fuchsian type

whose coefficients have logarithmic poles along the bifurcation set or discriminant of a deformation. In

addition we also describe another interesting application, a new method for computing the topological

index of a complex vector field on hypersurfaces with arbitrary singularities.
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Introduction

Let us consider a complex dynamical system given by an evolutionary process described
by a vector field in phase space. A point of phase space defines the state of such system. The
vector at this point indicates the velocity of change of the state. The points where the vector
field vanishes are called equilibrium points, equilibrium positions or singularities of the vector
field.

It was shown by [9] that the typical phase portraits in the neighbourhood of an equilibrium
point of a generic system can be classified so that the corresponding list consists of the five
simple types: two stable (focus, node) and three unstable (saddle, focus, node).

Of course, generic systems or, in other words, systems which are in general position
correspond to real evolutionary processes and vice versa. Such a system always depends on
parameters that are never known exactly. A small generic change of parameters transforms a
non-generic system into a generic one. Thus, at the first sight, more complicated cases might
not be considered since they turn into combinations of the above types after a small generic
perturbation of the system.

However, if one is interested not in an individual system but in systems depending on
parameters the situation is quite different and more complex. Thus, let us consider the space
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of all systems divided into domains of generic systems. The dividing sets (hypersurfaces)
correspond to degenerate systems. Under a small change of the parameters a degenerate system
becomes non-degenerate. A one-parameter family of systems is presented by a curve which can
intersect transversely the boundary separating different domains of nondegenerate systems.

Hence, although for each fixed value of the parameter the system can be always transformed
by a small perturbation into a nondegenerate one, it is impossible to do this simultaneously
for all values of the parameter. In fact, every curve closed to the one considered intersects the
boundary of the separate hypersurface at a close enough value of the parameter.

Thus, if one studies not an individual system only but the whole family, the degenerate cases
are not removable. If the family depends on a one parameter than the simplest degeneracies
are unremovable one, those represented by boundaries of codimension one (that is, boundaries
given by one equation) in the space of all systems. The more complicated degenerate systems,
forming a set of codimension two in the space of all systems, may be gotten rid of by a small
perturbation of the one-parameter family.

If one analyzes two-parameter families then one needs not to consider degenerate systems
forming a set of codimension three and so on. Therefore at first it ought to analyze all generic
systems, then degeneracies of codimension one, then – two and so on (see [4]). Herewith one
must not restrict the study of degenerate systems to the picture at the moment of degeneracy,
but must also include a description of the reorganizations that take place when the parameter
passes through the degenerate value.

1 Control space and parameters

Let us consider a family of smooth functions

f : R
n × R

r → R,

describing a certain process happening in various copies of R
n governed by the function f and

affected by the point in R
r. The coordinate space R

n is usually called the space of internal
variables while R

r the space of external variables over which each copy sits. Such terminology
is suitable when the variables in R

r label in physical space as in mechanics, optics, biology or
ecology, and so on.

For systems which one alters something and then to observe what happens the variables
in R

r are called the control parameters while the variables in R
n are called the behavioral

parameters. Accordingly the space R
r is referred to as the control space while R

n as the behavior
space. In the strictly mathematical context it natural to call the space R

r the deformation
space while its points (or their coordinates) the parameters of a deformation. The number r is
correspondingly the external or control dimension, or the dimension of deformation.

Suppose that a submanifold M ⊂ R
n × R

r is given by the equation

Dfu(x) = 0,

where fu(x) = f(x, u), (x, u) ∈ R
n × R

r, and D is the usual differential of the image

fu : R
n −→ R.

In other words, the manifold M is the set of all critical points of all the potentials fu in the
family f. Denote by ξ the restriction to M of the natural projection

π : R
n ×R

r −→ R
r, π(x, u) = u.
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The critical set is identified with the subset C ⊂ M consisting of singular points of the image
ξ. In other words, C consists of points in which the map ξ is singular, that is, the rank of the
derivative Dξ is less than r. The image of the critical set ξ(C) ⊂ R

r is called the bifurcation set
B.

It is not difficult to see, by computing Dξ, that C is the set of points (x, u) ∈ M, at which
fu(x) has a degenerate critical point. It follows that B is the locus where the number and
nature of critical points change (that is, it happens jump changes in the state of a control
system); for by structural stability of Morse functions such changes can only occur by passing
through a degenerate critical point. In most applications (for instance, in problems of stability,
optimization, in studying caustics, wave fronts and so on) it is the bifurcation set that is the
most important, for it lies in the control space, hence is "observable and all delay convention
jumps occur in it.

Investigations show that a bifurcation set as variety possesses highly complicated topological,
analytic, algebraic and geometric structures. Herewith it appears that characteristics of such a
variety depend mainly on the structure of its subvariety of singularities, which, in turn, also can
possess singularities and so on. This observation directly leads to the notion of a stratification
variety, but in the most general context the study of bifurcation sets is reduced to the study of
stratified varieties (see [11]).

Remark that in virtue of the well-known splitting lemma a smooth function f can be
represented around a point, where it has corank k, in the form:

f̃(x1, . . . , xk) ± x2
k+1 ± . . .± x2

n

(perhaps with parameters in R
r for f̃). Herewith the variables x1, . . . , xk are called essential

while xk+1, . . . , xn – unessential. Certainly, such presentation is very far from unique. It should
be also noted that most singularities met by an r-dimensional family will even when not regular
or Morse, have codimension less than r. However, it is possible to write an r-parameter family
f, around a point, where it meets transversely a singularity of codimension ν, in a way in which
only ν control parameters appear. When one has done so, one may call the coordinates on R

r

that no longer appear, disconnected or dummy control parameters.

2 Deformations

In fact, general evolutionary processes can be described with the help of polynomial, analytical
or smooth functions and systems of equations as well as in a wider context by systems of
differential equations. In particular, using properties of associated bifurcation sets, the discri-
minants or, more generally, singular loci, basic properties of the corresponding systems are
investigated. One of the most efficient tools of the investigation is a general notion of integrable
connection associated naturally with any deformation of a system. Let us shortly discuss basic
ideas of the theory. Consider the system of polynomial or analytic equations





f1(z1, z2, . . . , zm) = 0
...

fk(z1, z2, . . . , zm) = 0

(2.1)

given in a neighbourhood U of the origin in C
m. For simplicity we shall assume that k = m−1

and the set X0 of the solutions of our system in the neighbourhood U is one-dimensional. We
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shall say that a point, laying on the curve X0, is nonsingular if the differential form df1 ∧ . . .∧
dfm−1 does not vanish on it. Otherwise, this point (and the curve) refers to as singular, or shortly
a singularity. Without loss of generality one can suppose that X0 has the only singularity at
the origin {0} ∈ X0 ⊂ C

m, that is, X0 is the germ of a reduced curve.
We shall assume now that the equations of the system (2.1) can be perturbed:





f1(z1, z2, . . . , zm) = t1
...
fm−1(z1, z2, . . . , zm) = tm−1

(2.2)

in such a manner that at each sufficiently small value of parameters t = (t1, . . . , tm−1) ∈ C
m−1

in the chosen neighbourhood U the set Xt of the solutions of the system (2.2) is also one-
dimensional. In other words, we shall consider the principal (flat) deformation of the curve
singularity X0 given by the holomorphic map:

f : X −→ C
m−1. (2.3)

Let X be the intersection of a ball of a small radius ε > 0 centered at the distinguished point
{0} ∈ X0 with f−1(T ), where T ⊂ C

m−1 is a punctured ball of a radius 0 < δ ≪ ε centered at
the origin 0 = f(0). Consider the natural restriction f : X −→ T of the mapping (2.3). Then
for some values of parameters t ∈ T the fibres Xt are non-singular curve germs, for other ones
the corresponding fibres may have singular points called the critical points of map f.

3 Period integrals

Denote by C ⊂ X the set of critical points of f and by D its image f(C) ⊂ T. Thus,
parameters corresponding to the fibres with singularities form the set D which refers to as
the discriminant set, or the discriminant of the principal deformation X0. In many important
cases the discriminant is the zero-set of the only equation h(t1, . . . , tk) = 0, that is, D is a
hypersurface. Set

T ′ = T −D, X ′ = X − C.

The restriction f : X ′ → T ′ is a local trivial differentiable fibre bundle called the Milnor fibration
of f, that is, fibres Xt = f−1(t)∩X (of real dimension two) form a smooth fibre bundle over T ′.
Fix a point t0 ∈ T ′. Then for each smooth closed path γ0 ⊂ Xt0 , corresponding to the 1-cycle
in H1(Xt0 ,C), it is possible to construct a family of 1-cycles γ(t) ⊂ Xt, t ∈ T ′, such that
γ(t0) = γ0.

If one takes a holomorphic differential form ω = g(z)dz1∧ . . .∧dzm of the maximal degree in
a neighbourhood of the origin in C

m, then using the identity df1 ∧ . . .∧ dfm−1 ∧ψ = ω one can
find a differential form ψ, which is the result of the division of ω by df1 ∧ . . .∧ dfm−1. The form
ψ is not determined uniquely, but up to the summands containing differentials of the functions
f1, . . . , fm−1. It is easy to prove, that for all parameters t, rather close to zero, the integral

I(t) =

∫

γ(t)

ψ =

∫

γ(t)

ω

df1 ∧ . . . ∧ dfm−1
(3.1)

is determined correctly. Moreover, the integral I(t) is an analytic function in the variable t.
Integrals of such type are called the period integrals.



A.G. Aleksandrov, et al. Logarithmic differential ... 24

Replacing the differential form ω with another, the integral (3.1), generally speaking, will
also change. However, it is possible to prove that the set of all such integrals contains a finite
number of the elements I1(t), . . . , Iµ(t) so that any integral of the type (3.1) may be expressed
by means of these generators as a linear combination with holomorphic coefficients. In the
present context µ is the Milnor number which is a topological invariant of the singularity X0.

The same observation holds, if one fixes the form ω and takes various families γ(t). For
definiteness, we shall fix a family of vanishing cycles γ(t) and consider µ independent period
integrals of the following type

Ij(t) =

∫

γ(t)

ωj

df1 ∧ . . . ∧ dfm−1
,

where 1 ≤ j ≤ µ. The period integrals Ij(t) can be differentiated with respect to the parameter
t. Between integrals and their derivatives there arose linear relations (syzygies) with polynomial
coefficients in t. These relations generate a system of differential equations for the integrals Ij(t)
expressed through a finite number of independent integrals.

4 Connection

In such a way a system of differential equations in the variable t is associated with the germ
X0; this system is defined correctly outside of the discriminant and refers to as Gauss-Manin
connection, or Gauss-Manin system, associated with the principal deformation of X0. The
main problem is to describe a system of differential equations defined on the whole space of
parameters, which is equivalent to the initial one outside of the discriminant (or, in other words,
to extend the initial system to the discriminant set). It is possible to show that the solution
of this problem depends mainly on properties of the discriminants as well as on properties of
fibres of the deformation.

It turns out that the connection in question can be represented in a quite elegant form. In
order to explain this idea we need the following notion. Let ω be a meromorphic differential
form on S having poles along a reduced divisor D ⊂ S. Then ω is called the logarithmic along
D differential form if and only if ω and its total differential dω have poles along D at worst of
the first order. That is, hω as well as hdω are holomorphic differential forms on S where h is a
local equation of the hypersurface D ⊂ S.

The OS-module of logarithmic differential q-forms is usually denoted by Ωq
S(logD). Logarith-

mic differential forms have many remarkable analytic and algebraic properties (for example,
see [1]).

Following [10] denote by DerS(logD) the OS-module of logarithmic vector fields along D on
S. This module consists of germs of holomorphic vector fields η on S for which η(h) belongs
to the principal ideal (h)OS. In particular, the vector field η is tangent to D at its smooth
points. The inner multiplication of vector fields and differential forms induces a natural pairing
of OS-modules

DerS(logD) × Ωq
S(logD) −→ Ωq−1

S (logD).

For q = 1 this OS-bilinear mapping is a non-degenerate pairing so that DerS(logD) and
Ω1

S(logD) are OS-dual.
Let H be a free OS-module. Then a connection ∇ on H with logarithmic poles along D ⊂ S

is a C-linear morphism
∇X/S : H −→ H ⊗OS

Ω1
S(logD) (4.1)
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satisfying the following conditions:

1) ∇(ω + ω′) = ∇(ω) + ∇(ω′),
2) ∇(fω) = ω ⊗ df + f∇(ω), f ∈ OS.

Consider the case where Ω1
S(logD) is a free OS-module of rank m. Obviously, in such a case

Ωp
S(logD) =

∧p Ω1
S(logD), p ≥ 1. It is often said that the divisor D is free or, equivalently, D

is a Saito free divisor. The following characteristic property of such divisors was discovered by
[10].

Proposition 4.1 Suppose that there exist m logarithmic vector fields V1, . . . ,Vm ∈ DerS(logD)
such that for the (m×m)-matrix M whose entries are the coefficients of Vi, i = 1, . . . , m, one
has det(M) = ch, where c is a unit. Then V1, . . . ,Vm form a basis of the free OS-module
DerS(logD). In particular, Ω1

S(logD) is a free OS-module with the dual basis ω1, . . . , ωm.

For example, Ω1
S(logD) is free when D is the discriminant of the minimal versal deformation

of the system defined by a function with isolated singularity.
Now let D be a Saito free divisor. Then we can describe the logarithmic connection (4.1) on

Ω1
S(logD) itself. In other words, let us consider the case when H = Ω1

S(logD) :

∇ : Ω1
S(logD) → Ω1

S(logD) ⊗OS
Ω1

S(logD).

Let ω1, . . . , ωm be free generators of the module Ω1
S(logD). Then the connection ∇ can be

expressed in terms of Christoffel symbols in the following way:

∇ωi =

m∑

j=1

ωj ⊗ ωj
i , ωj

i =

m∑

k=1

Γjk
i ωk.

The connection ∇ is called torsion free if

d ωi =
m∑

j=1

ωj
i ∧ ωj =

m∑

k,j=1

Γjk
i ωk ∧ ωj ,

and ∇ is called integrable if

dωj
i =

∑m
k=1 ω

k
i ∧ ωj

k, that is, d∇ = ∇∧∇,

where ∇ =‖ωj
i‖ is the coefficient matrix of the connection ∇. In particular, it means that the

composition

H
∇−→ H ⊗ Ω1

S(logD)
∇−→ H ⊗ ∧2Ω1

S(logD)

is zero.

5 Holonomic systems

It is possible to associate with any integrable and torsion free connection ∇ on the module
Ω1

S(logD) a holonomic system of Fuchsian type in the following way.
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It is known (see [1]) that the multiplication by h induces the surjection

Ω1
S(logD)

·h−→ Tors Ω1
D −→ 0, (5.1)

whose kernel coincides with an OS-module

OS
dh

h
+ Ω1

S .

Here Ω1
S is the module of holomorphic differential 1-forms on S generated by the differentials

dz1, . . . , dzm over OS,
Ω1

D = Ω1
S/(hΩ1

S + OSdh)

is the module of regular differential 1-forms on the divisor D, and Tors Ω1
D is the torsion

submodule of Ω1
D. The support of Tors Ω1

D is contained in the singular locus SingD of the
hypersurface D. The torsion OD-module Tors Ω1

D has a system of generators containing at least
m− 1 elements.

By definition, the generalized Fuchsian system is a holonomic system of linear differential
equations on S with meromorphic coefficients containing in Ω1

S(logD) :

d I = Ω I, (5.2)

where I = tr(I1, . . . , Ik) is a vector-column of unknown functions and the matrix differential
form Ω is defined as follows:

Ω = A0
dh

h
+

ℓ∑

i=1

Ai
ϑi

h
.

Here the differential 1-forms ϑi ∈ Ω1
S, i = 1, . . . , ℓ, correspond via (5.1) to non-zero elements of

the torsion submodule Tors Ω1
D, and Ai ∈ End(Ck)⊗OS , i = 0, 1, . . . , ℓ, are coefficient matrices

with holomorphic entries such that the integrability condition dΩ = Ω ∧ Ω holds.
It is not difficult to show that one can associate to any integrable and torsion free connection

∇ on the module Ω1
S(logD) the generalized Fuchsian system of type (5.2) (see [3]). Moreover,

using the Christoffel symbols of such connection, it is possible to express the integrability
condition in terms of commuting relations of the coefficient matrices Ai, i = 1, . . . , ℓ.

Under some additional assumptions on entries of the coefficient matrices Ai it is possible
to investigate the system of type (5.2) and to describe its explicit solutions. In fact, such
solutions are quite useful in describing the control of evolutionary processes, perturbations of
multidimensional systems, and many applications in dynamical systems, bifurcation theory, etc.
(for example, see [8], [4]).

6 Topological index

The index of a vector field is one of the very first concepts in topology and geometry of smooth
manifolds, and its properties underlie important results of the theory, including the Poincaré-
Hopf theorem, which states that the total index of a vector field on a closed smooth orientable
manifold is independent of the field and coincides with the Euler-Poincaré characteristic of the
manifold. When studying singular varieties such as bifurcation sets, discriminants, etc., it is
natural to ask whether there exists a similar invariant in a more general context. One possible
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generalization of this type, which originally arose in topology of foliations, turned out to be
well suited for use in the theory of singular varieties. In this section, we shortly describe a new
method for the calculation of the index of vector fields on a hypersurface on the basis of the
theory of logarithmic differential forms and vector fields. The main idea of our approach is to
describe the index in terms of meromorphic differential forms defined on the ambient variety and
having logarithmic poles along the hypersurface (see [2]). We shall see that the systematic use
of the theory of logarithmic forms permits one not only to simplify the calculations dramatically
but also to clarify the meaning of the basic constructions underlying many papers on the subject
(for example, see [6]).

6.1 Regular differential forms

Let S be a complex manifold of dimension m = n+ 1, n ≥ 1, and let Ωq
D be the OD-module of

germs of regular (Kähler) differentials of order q on D, so that

Ωq
D,x = Ωq

S,x/
(
h·Ωq

S,x + dh ∧ Ωq−1
S,x

)
, q ≥ 0,

where x ∈ S. By analogy with smooth case, elements of Ωq
D,x are usually called germs of regular

holomorphic forms on D. Now let Der(D) = HomOD
(Ω1

D,OD) be the sheaf of germs of regular
vector fields on D and let us consider an element V ∈ Der(D). By V ∈ Der(S) we denote a
holomorphic vector field on S such that V|D = V. Then the interior multiplication (contraction)
ιV : Ωq

S −→ Ωq−1
S of vector fields and differential forms defines the structure of a complex on

Ω•
S, since ι2

V
= 0. The contraction ιV induces a homomorphism ιV : Ωq

D −→ Ωq−1
D of OD-modules

and also the structure of a complex on Ω•
D. The corresponding ιV -homology sheaves and groups

are denoted by H∗(Ω
•
D, ιV ) and H∗(Ω

•
D,x, ιV ), respectively.

6.2 Homological index

If the vector field V has an isolated singularity at a point x ∈ D, then ιV -homology groups of
the complex Ω•

D,x are finite dimensional vector spaces, so that the Euler characteristic

χ
(
Ω•

D,x, ιV
)

=

n+1∑

i=0

(−1)idimHi

(
Ω•

D,x, ιV
)
,

of the complex of regular differentials is well-defined. It is called the homological index of the
vector field V at the point x ∈ D and denoted by Indhom,D,x(V ) (see [7]). At nonsingular
points of D the homological index coincides with the topological index, or, equivalently, with
the Poincaré-Hopf local index.

6.3 Logarithmic index

Let us consider a vector field V ∈ DerS(logD). The interior multiplication ιV defines the
structure of a complex on Ω•

S(logD).

Lemma 6.1 If all singularities of the vector field V are isolated, then ιV-homology groups of
the complex Ω•

S(logD) are finite dimensional vector spaces.
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Proof. Assume that S ∼= C
m, m = n + 1, and the point x0 = 0 ∈ D ⊂ S is an isolated

singularity of the field V, so that V(x0) = 0. Then V(x) 6= 0 at each point x in a sufficiently
small punctured neighbourhood of x0. In a suitable neighbourhood of x there exists a coordinate
system (t, z′1, . . . , z

′
n) such that V = ∂/∂t. Since V(h) ⊆ (h)OS,0, it follows that D ∼= T × D0,

where T is a small disc in the variable t and D0 is a hypersurface in C
n. It is easy to show that

Ωq
Cn+1,0(logD) ∼=

(
Ωq

Cn,0(logD0) ⊕ Ωq−1
Cn,0(logD0) ∧ dt

)
⊗C OC,0.

Indeed, for germs of holomorphic forms one has the isomorphism Ωq
D,0

∼=
(
Ωq

D0,0⊕Ωq−1
D0,0∧dt

)
⊗C

OC,0 which can readily be obtained by considering of the canonical projections of the analytic
set T ×D0 onto the first and second factors and the definition of Ωq

D,0. The desired isomorphism
for germs of logarithmic forms can be obtained by a similar argument with the use of the exact
sequence

0 → Ωq
Cn+1,0 + dh

h
∧ Ωq−1

Cn+1,0 → Ωq
Cn+1,0(logD)

·h−→ Ωq
D,0 → Ωq

D,0/TorsΩq
D,0 → 0, which follows

from the exact sequence expressing the torsion subsheaves Tors Ωq
D in terms of logarithmic

differential forms (see [2]).
Further, in the q-th piece of the complex (Ω•

S,0(logD), ιV) one has

Ker (ι∂/∂t) ∼= Im (ι∂/∂t) ∼=
(
Ωq

Cn,0(logD0) ⊕ (0)
)
⊗C OC,0.

That is, the corresponding homology groups vanish for all q. The same conclusion readily follows
for the point x0 ∈ S \D. Consequently the ιV-homology groups of the complex Ω•

S(logD) may
be non-trivial only at singular points of the field. Since the sheaves of logarithmic forms as well
as their cohomology are coherent, we arrive at the statement of the Lemma.

Thus if the vector field V has isolated singularities, then the Euler characteristic

χ
(
Ω•

S,x(logD), ιV
)

=
n+1∑

i=0

(−1)idimHi

(
Ω•

S,x(logD), ιV
)

of the complex of logarithmic differential forms is well defined for any point x ∈ S. It is called
the logarithmic index of the field V at the point x and denoted by Indlog D,x(V). It follows from
the preceding that Indlog D,x(V) = 0 whenever V(x) 6= 0.

6.4 The index of vector fields on hypersurfaces

To study the ιV-homology of the complex Ω•
D, one can use an approach based on a representation

of regular holomorphic differential forms on the hypersurface D via meromorphic forms with
logarithmic poles along D (see [2]). Recall [loc. cite] that for all q = 0, 1, . . . , n+ 1, there exist
exact sequences

0 → Ωq−1
S,x /h · Ωq−1

S,x (logD)
∧dh−→ Ωq

S,x/h · Ωq
S,x → Ωq

D,x → 0

of OS,x-modules, where ∧dh is the homomorphism of exterior multiplication. Hence one obtains
the exact sequence

0 →
(
Ω•

S,x/hΩ
•
S,x(logD), ιV

)
[−1]

∧dh−→
(
Ω•

S,x/hΩ
•
S,x, ιV

)
→
(
Ω•

D,x, ιV
)
→ 0 (6.1)
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of complexes. Indeed, the fact that the multiplication by ∧dh induces a morphism of complexes
follows from the identity

ιV(ω) ∧ dh = ιV(ω ∧ dh) + (−1)q−1ω ∧ V(h),

since the second summand from the right-hand side vanishes in the quotient complex Ω•
S/hΩ

•
S

in view of the condition V(h) ∈ (h)OS,x. Now note that from the exact sequence

0 −→ (Ω•
S,x, ιV)

·h−→ (Ω•
S,x, ιV) −→ (Ω•

S,x/hΩ
•
S,x, ιV) −→ 0

of complexes it follows that χ
(
Ω•

S,x/hΩ
•
S,x, ιV

)
= 0. Thus from the exact sequence (6.1) one

obtains

Indhom,D,x(V ) = −χ((Ω•
S,x/hΩ

•
S,x(logD), ιV)[−1]) = χ(Ω•

S,x/hΩ
•
S,x(logD), ιV).

Proposition 6.2 Suppose that x ∈ D is an isolated singularity of a vector field V ∈ Der(logD),
the germs vi ∈ OS,x are determined by the expansion V =

∑
i vi∂/∂zi, and JxV = (v1, . . . , vm)OS,x.

Then

Indhom,D,x(V ) = dim OS,x/JxV − Indlog D,x(V ).

Let us consider the case when D is a Saito free divisor. Then the complex
(
Ω•

S,x(logD), ιV
)

is naturally isomorphic to the Koszul complex K•

(
(α1, . . . , αm); OS,x

)
on the generators ei =

ωi, i = 1, . . . , m, where the germs αi ∈ OS,x are determined as coefficients of the expansion
V =

∑
i αiV

i of V in the basis of logarithmic vector fields. In this case one readily obtains the
following identity:

Indlog D,x(V) = χ
(
K•

(
(α1, . . . , αm); OS,x)

)
.

Corollary 6.3 Let Jlog D,xV = (α1, . . . , αm)OS,x. Suppose that the coefficients (α1, . . . , αm)
form a regular OS,x-sequence. Then

Indhom,D,x(V) = dim OS,x/JxV − dim OS,x/Jlog D,xV.

6.5 Normal hypersurfaces

Let Z = SingD be the singular locus of a reduced divisor D, and let c = codim (Z,D) be the
codimension of Z in D. It is well-known (see [1]) that c = 1 for Saito free divisors, that is, in a
sense, the singularities of D form the maximal possible subset of the divisor. For c ≥ 2, Serre’s
criterion implies that the hypersurface D is a normal variety. For further analysis of this case
we use the following reformulation due to [10] of the notion of logarithmic forms.

Lemma 6.4 The germ ω of a meromorphic differential q-form at a point x ∈ S with poles
along D is the germ of a logarithmic form (that is, ω ∈ Ωq

S,x(logD)) if and only if when there

exists a holomorphic function germ g ∈ OS,x, a holomorphic (q− 1)-form germ ξ ∈ Ωq−1
S,x and a

holomorphic q-form germ η ∈ Ωq
S,x, such that

(i) dim CD ∩ {z ∈M : g(z) = 0} ≤ n− 1,

(ii) gω = dh
h
∧ ξ + η.
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Let ̺ : Ωq
S,x(logD) −→ Ωq

S,x be the homomorphism of multiplication by h, and let ω ∈ Ωq
S,x

(logD). Then there exists an element g ∈ OS,x in Lemma 6.4 such that ghω ∈ hΩq
S,x+dh∧Ωq−1

S,x ,
that is, ghω = 0 in Ωq

D,x. Since the germ g defines a zero non-divisor in OD,x, in particular, this
means that hω ∈ Tors Ωq

D,x, where the torsion submodule of the sheaf of regular q-differentials is
denoted by Tors Ωq

D,x. Thus, Im (̺) ⊆ Tors Ωq
D,x (actually one has the equality). If Tors Ωq

D,x = 0,
then the germ g in (ii) can only be an invertible element; consequently,

Ωq
S,x(logD) ∼= Ωq

S,x +
dh

h
∧ Ωq−1

S,x . (6.2)

In fact, this isomorphism can be obtained without the preceding argument if one directly makes
use of the exact sequence for the torsion submodules Tors Ωq

D,x (for example, see [1]).

Theorem 6.5 Let D be a normal hypersurface. Then

Indhom,D,x(V ) = dim OS,x/(h, JxV) +
∑n+1

i=c′(−1)idimHi(Ω
•
D,x, ιV ),

where c′ = 2[ c+1
2

] + 1, the square brackets denote the integer part of rational numbers, and the
sum is zero by convention if the lower limit is greater than the upper limit.

Proof. It is well-known that Tors Ωq
D = 0 if 0 < q < c. Hence, together with the isomorphism

(6.2), this means that Ωq
S,x/hΩ

q
S,x(logD) ∼= Ωq

D,x for all such q. Therefore, it follows from the
exact sequence (6.1) that

Hi(Ω
q
D, ιV ) ∼= Hi−1(Ω

q
D[−1], ιV ) = Hi−2(Ω

q
D, ιV )

for all i = 3, . . . , c+ 1. In particular, in this range the dimensions of the ιV -homology groups of
the complex Ω•

D,x in the two series H2i and H2i−1 coincide. Further, one can readily see that the
dimensions of groups H1 and H2 also coincide (see [2]), whence the desirable formula follows.
The integer part in the lower limit of the sum is needed in order to distinguish between the
cases of even and odd codimension.

Corollary 6.6 Suppose that a point x ∈ D is an isolated singularity of the hypersurface D as
well as of a vector field V ∈ Der(logD), V(h) = ϕh and ϕ ∈ OS,x. Then

Indhom,D,x(V ) = dim OS,x/(h, JxV) + εdim Ann Bx
(h)/(ϕ)Bx,

where ε = −1 if n is even and ε = 0 otherwise, and Bx is the local ring OS,x/JxV.

7 Conclusion

In many applications (say, in the theory of dynamical systems, bifurcation theory, in economic,
biology, chemistry, etc.) a stable equilibrium state describes the established conditions in the
corresponding real system (see [8], [5]). When it merges with an unstable equilibrium state the
system must jump to a completely different state: as the parameter is changed the equilibrium
condition in the neighbourhood considered suddenly disappears. The described results allow
one to investigate in detail jumps of this kind with the use of invariants of bifurcation sets and
discriminants associated with deformations of a complex system.
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ЛОГАРИФМИЧЕСКИЕ ДИФФЕРЕНЦИАЛЬНЫЕ ФОРМЫ И
КОМПЛЕКСНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ
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Аннотация. Широкий класс сложных динамических систем может быть описан как эволюци-

онный процесс, заданный векторным полем с полиномиальными, аналитическими или гладкими

коэффициентами в фазовом пространстве. Такие системы исследуются методом возмущений и

анализом пространств управления и поведения вместе с соответствующим бифуркационным мно-

жеством и дискриминантом. Описывается подход к изучению таких систем, основанный на ме-

тодах теории логарифмических дифференциальных форм, теории деформаций и интегрируемых

связностей, ассоциированных с деформациями. Такая связность может быть представлена в ви-

де голономной системы дифференциальных уравнений фуксового типа, коэффициенты которой

обладают логарифмическими полюсами вдоль бифуркационного множества или дискриминанта

деформации. Кратко обсуждается и другое интересное приложение – новый метод вычисления

топологического индекса комплексного векторного поля на гиперповерхности с произвольными

особенностями.

Ключевые слова: логарифмические дифференциальные формы, гиперповерхность с осо-

бенностями, кручение дифференциалов, регулярные мероморфные дифференциальные формы,

форма-вычет, индекс векторного поля.
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Foreword

This article is a brief account of my talk given at Moscow session of China-Russia Symposium
"Complex Analysis and its applications"on October 24, 2009.

Preliminaries

Given two sequences of variables

{aν}+∞
ν=1 and {bν}+∞

ν=0 (1.1)

we can produce the following sequences of fractions:

R0(b0) = b0, R1(b0, a1, b1) = b0 +
a1

R0(b1)
, ... (1.2)

Rν(b0, a1, b1, ..., aν , bν) = b0 +
a1

Rν−1(b1, a2, b2, ..., aν , bν)
(1.3)

for a positive integer ν. They are called the fraction Rν by the finite continued fraction generated
by sequences (1.1). Below we use the following standard notation:

Rν = b0 +
a1|
|b1

+ ... +
aν |
|bν

(1.4)

If all elements of sequences (1.1) are complex numbers (but not variables), all fractions (1.4)
are well defined for these complex numbers and there exists the limit

lim
ν→∞

Rν = α,

then it is said that α has expansion in continued fraction

α = b0 +
a1|
|b1

+ ... +
aν |
|bν

+ ... (1.5)

Partially supported by the Russian Foundation of Basic Research (RFBR) and by the National Natural
Science Foundation of China (NSFC) in the framework of the bilateral project "Complex Analysis and its
applications"(project No. 08-01-92208)
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They are called the finite continued fractions (1.4) as convergents of the continued fraction
(1.5). Let us consider further the following difference equation

xν+1 − bν+1xν − aν+1xν−1 = 0, (1.6)

with nonnegative ν. Let {Pν}+∞
ν=−1 and {Qν}+∞

ν=−1 be solutions of this equation with the following
initial values

P−1 = 1, Q−1 = 0, P0(b0) = b0, Q0(b0) = 1. (1.7)

Then easy induction shows that Pν and Qν are numerator and denominator of finite continuous
fraction (1.4). Since we have the equality

(
Pν+1

Qν+1

)
= bν+1

(
Pν

Qν

)
+ aν+1

(
Pν−1

Qν−1

)
, (1.8)

it follows that

∆ν+1 = det

(
Pν+1 Pν

Qν+1 Qν

)
= −aν+1∆ν = (−1)ν

ν+1∏

k=1

ak,

and therefore

Pν+1

Qν+1
− Pν

Qν
= (−1)ν

ν+1∏
k=1

ak

QνQν+1
. (1.9)

It follows from Apéry results that the number α = ζ(3) has the expansion in the continued
fraction (1.5) with

b0 = 0, a1 = 6, b1 = 5, aν+1 = −ν6, bν+1 = (1.10)

34ν3 + 51ν2 + 27ν + 5,

where ν ∈ N. Yu.V. Nesterenko (1996) has offered the following expansion of the number ζ(3)
in continuous fraction:

ζ(3) = 1 +
1|
|4 +

4|
|4 +

1|
|3 +

4|
|2 ..., (1.11)

with aν and bν given by the following equalities

b0 = 1, a1 = 1, b1 = a2 = b2 = 4. (1.12)

b4k+1 = 2k + 2, a4k+1 = k(k + 1), b4k+2 = (1.13)

2k + 4, a4k+2 = (k + 1)(k + 2)

for k ∈ N,

b4k+3 = 2k + 3, a4k+3 = (k + 1)2, b4k+4 = (1.14)

2k + 2, a4k+4 = (k + 2)2

for k ∈ N0.
Let P ∧

ν and Q∧
ν be numerator and denominator of Nesterenko fractions. It is easy to prove

that numerator and denominator of Nesterenko fractions with subscript 4ν−2 are equal to the
numerator and denominator of Apéry fraction with subscript ν, respectively.
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2 The main result

The goal of present work is to give some supplements to Apéry’s and Nesterenko’s results. Our
research is based on the results about difference systems connected with Mejer’s functions; I
gave a talk about these results on conference in memory of professor N.M.Korobov.

Thus, we have found the following expansions of the number ζ(3) in continuous fractions:
Theorem A. The number ζ(3) has the following two expansions in continued fraction: the first
one is

2ζ(3) = b
(∗1)
0 +

a
(∗1)
1 |
|b(∗1)1

+ ... +
a

(∗1)
ν |
|b(∗1)ν

+ ..., (2.1)

with bν and aν given by the equalities

b
(∗1)
0 = 3, a

(∗1)
1 = −81,

a(∗1)
ν = −(ν − 1)3ν3(4ν2 − 4ν − 3)3

for ν ∈ [2,+∞) ∩ N,

b(∗1)ν = 4(68ν6 − 45ν4 + 12ν2 − 1)

for ν ∈ N, and the second is

2ζ(3) = b
(∗2)
0 +

a
(∗2)
1 |
|b(∗2)2

+ ... +
a

(∗2)
ν |
|b(∗2)ν

+ ..., (2.2)

with bν and aν given by the equalities

b
(∗2)
0 = 2, a

(∗2)
1 = 42,

a(∗2)
ν = −(ν − 1)3ν3(4ν2 − 4ν − 3)((ν + 1)3 − ν3)((ν − 1)3 − (ν − 2)3)

for ν ∈ [2,+∞) ∩ N,

b(∗2)ν = 2(102ν6 − 68ν4 + 21ν2 − 3),

for ν ∈ N.
As a result we specify also a way to obtain many other expansions of the number ζ(3) in

continued fractions.
The next three sections contain a sketch of proof of Theorem A.

3 Auxiliary functions

Suppose that z satisfies to the following conditions:

|z| > 1,−3π/2 < arg(z) ≤ π/2, log (z) = ln(|z|) + i arg(z), (3.1)

let δ be the differentiation z ∂
∂z
, and let α be a nonnegative integer. My first auxiliary function

is a finite sum

f ∗∨
α,1(z, ν) := f ∗

α,1(z, ν) :=

ν+α∑

k=0

(z)k

(
ν + α

k

)2(
ν + k

ν

)2

. (3.2)
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Let us consider the rational function given by the equality

R(α, t, ν) =

ν∏
j=1

(t− j)

ν+α∏
j=0

(t+ j)

. (3.3)

My second and fourth auxiliary function are sums of the following series

f ∗
α,2(z, ν) =

+∞∑

t=1

z−t (ν + α)!2

ν!2
(R(α, t, ν))2, (3.4)

f ∗
α,4(z, ν) = −

+∞∑

t=1

z−t (ν + α)!2

ν!2

(
∂

∂t
(R2)

)
(α, t, ν). (3.5)

Finally my third auxiliary function is defined as follows:

f ∗
α,3(z, ν) = (log (z))f ∗

α,2(z, ν) + f ∗
α,0,4(z, ν). (3.6)

We consider also the functions fα,k(z, ν), k = 1, 2, 3, 4, related with previous functions by
means of the equalities

fα,k(z, ν) =
ν!2

(ν + α)!2
(z, ν)f ∗

α,k(z, ν), (3.7)

where k = 1, 2, 3, 4, ν ∈ N0. Making use of the expansion of the following rational function

(ν + α)!2

(ν!)2
(−t)r(R(α, t, ν))2

into partial fractions relatively to t, and some simple transformations we obtain the following
equality

δrf ∗
α,2+j(z, ν) − j(log (z))δrf ∗

α,2(z, ν) = (3.8)

(
2∑

i=1

(1 − j + ij)β
∗(r)
α,i (z; ν)Li+j(1/z)

)
− β

(r)
α,3+j(z; ν),

where δ = z ∂
∂z
, j = 0, 1, r = 0, 1, 2, 3, |z| > 1, α ∈ N, s ∈ Z,

Ls(1/z) =
∞∑

n=1

1/(znns) (3.9)

are polylogarithms and β∗(r)
α,0,i(z; ν), β

∗(r)
α,0,3+j(z; ν), are polynomials of z with rational coefficients.

It is clear that

Ls(1) = ζ(s), s > 1. (3.10)
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4 Passing to a difference system

In fact, the auxiliary functions f∨
α,k(z, ν) are generalized hypergeometric functions, so called

Mejer’s functions. They satisfy the following differential equation

Dα(z, ν, δ)f∨
α,k(z, ν) = 0, (4.1)

where ν ∈ [0,+∞) ∩ Z, k ∈ K0 = {1, 2, 3},

Dα(z, ν, δ) = z(δ − ν − α)2(δ + ν + 1)2 − δ4. (4.2)

is differential operator, and δ := z ∂
∂z
. It follows from general properties of the Mejer’s functions

that
(δ + ν + 1)2fα,k(z, ν) = (δ − ν − 1 − α)2fα,k(z, ν + 1), (4.3)

where ν ∈ [0,+∞) ∩ Z, k ∈ K0. Since,

(1 − 1/z)−1Dα(z, ν, δ) = δ4 −
4∑

k=1

bα,kδ
k−1,

we can obtain by standard considerations the differential system

δXα,k(z; ν) = Bα(z; ν)Xα,k(z; ν), (4.4)

where k = 1, 2, 3, |z| > 1, ν ∈ N0,

Bα(z; ν) =




0 1 0 0
0 0 1
0 0 0 1

bα,1(z; ν) bα,2(z; ν) bα,3(z; ν) bα,4(z; ν)


 ,

Xα,k(z; ν) =




f ∗
α,k(z, ν)

δf ∗
α,k(z, ν)

δ2f ∗
α,k(z, ν)

δ3f ∗
α,k(z, ν)


 ,

where k = 1, 2, 3, |z| > 1. In view of (4.2),

Dα(z,−ν − α− 1, δ) = Dα(z, ν, δ). (4.5)

Therefore we can put
Xα,k(z;−ν − 1 − α) = Xα,k(z; ν), (4.6)

where ν ∈ N0, and then consider Xα,k(z; ν) on

ν ∈M∗∗∗
α = ((−∞,−1 − α] ∪ [0,+∞) ∩ Z,

Finally, we use the equations (4.1), (4.3) and (4.4) to obtain the following difference system.
Theorem 1. The column Xα,k(z; ν) satisfies to the equation

ν5Xα,k(z; ν − 1) = A∗
α(z; ν)Xα,k(z; ν), (4.7)
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for ν ∈M∗
α = (−∞,−1−α]∪ [1,+∞))∩Z, k = 1, 2, 3, |z| > 1; moreover, the matrix A∗

α(z; ν)
has the following property:

−ν5(ν + α)5E4 = A∗
α(z;−ν − α)Aα,

∗ (z; ν), (4.8)

where E4 is the 4 × 4 unit matrix, z ∈ C, ν ∈ C.
Although the matrix A∗

α(z; ν) is a 4 × 4-matrix, its elements are huge polynomials in
Q[z, ν, α]. For example, if we put

µ = µα(ν) = (ν + α)(ν + 1), τ = τα(ν) = ν +
1 + α

2
, (4.9)

then the the matrix A∗
α(z; ν) has on intersection of its first row and its first column the element

a∗α,1,1(z, ν) = a∨α,1,1(z, ν) + τa∧α,1,1(z, ν),

where

a∨α,1,1(z, ν) =
1

2
(−1 + 2α− α2 − 5µ+ 3αµ− 5µ2 − αµ2)+ (4.10)

z

2
(−4 + 12α− 13α2 + 6α3 − α4)+

z

2
µ(−32 + 54α− 29α2 + 5α3 − 56µ+ 20αµ),

a∧α,1,1(z; ν) = 1 − α + 3µ+ µ2+ (4.11)

z(4 − 8α + 5α2 − α3 + 24µ− 22αµ+ 5α2µ+ 16µ2),

So, the equality (4.8) was very helpful for us, when we have checked our calculations.

5 Reducing the obtained system to the difference system
of the second order in the case α = 1.

This is key point in our research, it leads to desirable results. In the case α = 1 the situation
simplifies since the above system is reducible and our problem can be reduced to the consideration
of a system of the second order. To be more precise, in this case

τ = τ1(ν) = ν + 1, µ = µ1(ν) = (ν + 1)2, (5.1)

1

z
Dα(z, ν, δ) = (1 − 1/z)δ4 +

3∑

k=0

rα,k+1(ν)δ
k, (5.2)

where
r1(ν) = µ1(ν)

2 = (ν + 1)4 = τ 4, r2(ν) = 0,

r3(ν) = −2µ1(ν) = −2(ν + 1)2, r4(ν) = 0,

Let us consider the row
R(ν) = (r1(ν), r2(ν), r(ν), r4(ν)). (5.3)

Let E4 be the 4 × 4-unit matrix, and let C(ν) be the result of replacement of 1-th row of the
matrix E4 by the row in (5.3). Let further D(ν) be the adjoint matrix to the matrix C(ν). Then

C(ν)D(ν) = µ2E4, C(−ν − 2) = C(ν), D(−ν − 2) = D(ν), (5.4)
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Set
A∗∗

1 (1, ν) = C(ν − 1)A∗
1(z, ν)D(ν). (5.5)

and

Y1,k(z; ν) =




y1,1,k(z; ν)
y1,2,k(z; ν)
y1,3,k(z; ν)
y1,4,k(z; ν)


 = C(ν)X1,k(z; ν), (5.6)

where k = 1, 2, 3, |z| > 1, ν ∈M∗∗∗
1 = ((−∞,−2] ∪ [0,+∞)) ∩ Z. Then

Y1,k(z;−ν − 2) = Y1,k(z; ν), (5.7)

µ1(ν)
2ν5Y1,k(z; ν − 1) = A∗∗

1 (z, ν)Y1,k(z; ν), (5.8)

where κ = 0, 1, k = 1, 2, 3, |z| > 1, ν ∈ M∗
1 = ((−∞,−2] ∪ [1,+∞)) ∩ Z. Replacing in the

equality (5.8)
ν ∈M∗

1 = ((−∞,−2] ∪ [1,+∞)) ∩ Z

by
ν := −ν − 2 ∈M∗∗

1 = ((−∞,−3] ∪ [0,+∞)) ∩ Z,

and taking in account (5.7) we obtain the equality

µ1(ν)
2(ν + 2)5Y1,k(z; ν + 1) = −A∗∗

1 (z,−ν − 2)Y1,k(z; ν), (5.9)

where k = 1, 2, 3, |z| > 1, ν ∈ M∗∗
1 = ((−∞,−3] ∪ [0,+∞)) ∩ Z. The matrix A∗∗

1 (z, ν) can be
represented in the form

A∗∗
1 (z; ν) = A∗∗

1 (1; ν) + (z − 1)V ∗∗
1 (ν), (5.10)

where the matrix V ∗∗
1 (ν) does not depend from z. We will tend z ∈ (1,+∞) to 1. Therefore we

must study the behavior of our auxiliary functions, when tend z ∈ (1,+∞) to 1. Then

trR(1, t, ν)2 =

ν∏
j=1

(t− j)2

ν+1∏
j=0

(t+ j)2

= tr−4 + tr−5O(1) (t→ +∞) (5.11)

tr
(
∂

∂t
(R2)

)
(1, t, ν) = tr−5O(1) (t→ +∞) (5.12)

for r = 0, 1, 2 3, 4. Therefore
(z − 1)δrf1,2(z, ν) = (5.13)

+∞∑

t=1

z−t(−t)r(R(α, t, ν))2 = (z − 1)O(1) ln(1 − 1/z) → 0 (z → 1 + 0)

for r = 0, 1, 2, 3,
(z − 1)δ4f1,2(z, ν) = (5.14)

+∞∑

t=1

z−t(−t)4(R(α, t, ν))2 = 1 + (z − 1)O(1) ln(1 − 1/z) → 1 (z → 1 + 0)
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(z − 1)δrf1,4(z, ν) = (5.15)

−
+∞∑

t=1

z−t(−t)r

(
∂

∂t
(R2)

)
(1, t, ν) = (z − 1)O(1) → 0 (z → 1 + 0)

for r = 0, 1, 2, 3, 4 and

(z − 1)δrf1,3(z, ν) = (z − 1)(log (z))δrf1,2(z, ν)+ (5.16)

(z − 1)rδr−1f1,2(z, ν) + (z − 1)δrf1,4(z, ν) → 0 (z → 1 + 0)

for r = 0, 1, 2, 3, 4. Further we have

y1,j+1,k(z, ν) = δjf1,k(z, ν), (5.17)

where j = 1, 2, 3 k = 1, 2, 3, |z| > 1, ν ∈ N0. Further we have

y1,1,k(1, ν) := lim
z→1+0

y1,1,k(z, ν) = (5.18)

− lim
z→1+0

(1 − 1/z)δ4f1,k(z, ν) = (k − 1)(k − 3), where k = 1, 2, 3, , ν ∈ N0,

A∗∗
1 (1; ν) =




(ν + 1)4ν5 0 0 0
a∗∗1,2,1(1; ν) a∗∗1,2,2(1; ν) a∗∗1,2,3(1; ν) 0
a∗∗1,3,1(1; ν) a∗∗1,3,2(1; ν) a∗∗1, 3, 3(1; ν) 0
a∗∗1,4,1(1; ν) a∗∗1,4,2(1; ν) a∗∗1,4,3(1; ν) (ν + 1)4ν5


 (5.19)

with
a∗∗1,2,1(1; ν) = (5.20)

−τ 2(τ − 1)(2τ − 1)(6τ 2 − 4τ + 1),

a∗∗1,2,2(1; ν) = τ 5(τ − 1)(τ 3 + 2(2τ − 1)3), (5.21)

a∗∗1,2,3(1; ν) = −3τ 4(τ − 1)(2τ − 1)3, (5.22)

a∗∗1,3,1(1; ν) = (5.23)

τ 2(τ − 1)2(2τ − 1)(4τ 2 − 3τ + 1),

a∗∗1,3,2(1; ν) = (5.24)

−2τ 5(τ − 1)2(2τ − 1)(τ 3 − (τ − 1)3),

a∗0∗1,3,3(1; ν) = (5.25)

τ 4(τ − 1)2((τ − 1)3 + 2(2τ − 1)3),

a∗∗1,4,1(1; ν) = (5.26)

−τ 2(τ − 1)3(2τ − 1)(2τ 2 − 2τ + 1),

a∗∗1,4,2(1; ν) = (5.27)

τ 5(τ − 1)3(2τ − 1)(4τ 2 − 5τ + 3).

a∗∗1,4,3(1; ν) = (5.28)
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−τ 4(τ − 1)3(2τ − 1)(6τ 2 − 8τ + 3).

If we consider the second and third equations in the system of equations (5.8) with k = 1, 3
and tend z ∈ (1,+∞) to 1, then, in view of (5.18) and (5.19), we obtain equations

µ1(ν)
2ν5δif1,0,k(1, ν − 1) = (5.29)

(
2∑

j=1

a∗∗1,0,i+1,j+1(1; ν)(δjf1,0,k)(1, ν)

)
,

where i = 1, 2, k = 1, 3 and ν ∈M∗
1 = ((−∞,−2] ∪ [1,+∞)) ∩ Z.

Let us take
F = {F (ν)}+∞

nu=−∞ and G = {G(ν)}+∞
nu=−∞ (5.30)

such that
F (−ν − 2) = F (ν), G(−ν − 2) = G(ν), F (ν) ∈ Q, G(ν) ∈ Q (5.31)

for ν ∈ Z. Then in view of (5.7),

y∗∗F,G(z,−ν − 2) = y∗∗F,G(z, ν) = (5.32)

for κ = 0, 1, k = 1, 3 and ν ∈M∗∗∗
1 = ((−∞,−2] ∪ [0,+∞)) ∩ Z. In view of (5.29)

(
2∑

j=1

a∗∗∗F,G,j+1(1; ν)(δjf1,0,k)(1, ν)

)
= (5.33)

µ1(ν)
2ν5y∗∗∗F,G(z, ν − 1),

where k = 1, 3 and ν ∈M∗
1 = ((−∞,−2] ∪ [1,+∞)) ∩ Z. Replacing in (5.33) ν ∈M∗

1 by

ν := −ν − 2 ∈M∗∗
1 = ((−∞,−3] ∪ [0,+∞)) ∩ Z,

and taking in account the equality (5.7) we obtain the equalities
(

2∑

j=1

a∗∗κ∗F,G,j+1−κ(1;−ν − 2)(δj−κf1,0,k)(1, ν)

)
= (5.34)

−µ1(ν)
2(ν + 1)5y∗∗F,G(z, ν + 1),

where k = 1, 3 and ν ∈M∗∗
1 = ((−∞,−3] ∪ [0,+∞)) ∩ Z. Set

~w
(κ)
F,G,j(ν) =




a∗∗∗F,G,j+1(1;−ν − 2)
F (ν)(2 − j) +G(ν)(j − 1)

a∗∗∗F,G,j+1(1; ν − 1)


 , (5.35)

where j = 1, 2, ν ∈M∗∗∗∗
1 = ((−∞,−3] ∪ [1,+∞)) ∩ Z,

WF,G(ν) =
(
~w

(κ)
F,G,1(ν) ~w

(κ)
F,G,2(ν)

)
= (5.36)




a∗∗∗F,G,2(1;−ν − 2) a∗∗∗F,G,3(1;−ν − 2)
F (ν) G(ν)

a∗∗∗F,G,2(1; ν) a∗∗∗F,G,3(1; ν)


 , Y ∗∗∗

k (ν) =
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(
(δf1,0,k)(1, ν)
(δ2f1,0,k)(1, ν)

)
,

Y ∗∗∗∗
F,G,k(ν) = (5.37)




−µ1(ν)
2(ν + 2)5y∗∗F,G(z,−ν − 2)

y∗∗F,G(z, ν)
µ1(ν)

2ν5y∗∗F,G(z, ν − 1)


 ,

where k = 1, 3, ν ∈M∗∗∗∗
1 = ((−∞,−3] ∪ [1,+∞)) ∩ Z. In view of (5.33) and (5.34)

Y ∗∗∗∗
F,G,k(ν) = WF,G(ν)Y ∗∗∗

k (ν). (5.38)

Let further

~wF,G,3(ν) =




wF,G,3,1(ν)
wF,G,3,2(ν)
wF,G,3,3(ν)


 = [~wF,G,1(ν), ~wF,G,2(ν)] (5.39)

be the vector product of ~wF,G,1(ν) and ~wF,2(ν), and let

w̄F,G,3(ν) = (~wF,G,3(ν))
t

be the row conjugate to the column ~wF,G,3(ν). Then for scalar products

(~w
(κ)
F,G,3(ν), ~w

(κ)
F,G,j(ν))

we have the equalities
w̄

(κ)
F,G,3(ν)~w

κ
F,G,j(ν) =

(~w
(κ)
F,G,3(ν), ~w

(κ)
F,G,j(ν)) = 0,

where κ = 0, 1, j = 1, 2 and

ν ∈M∗∗∗∗
1 = ((−∞,−3] ∪ [1,+∞)) ∩ Z.

Therefore
w̄F,G,3(ν)WF,G(ν) =

(
0 0

)
, (5.40)

where ν ∈ M∗∗∗∗
1 = ((−∞,−3] ∪ [1,+∞)) ∩ Z. In view of (5.29), (5.34) and (5.40),

w̄(κ)F,G,3(ν)Y
∗κ∗∗∗
F,G,k (ν) = (5.41)

w̄(κ)i,3(ν)W (κ)i(ν)Y
∗∗∗
k (ν) = 0,

where k = 1, 3 and ν ∈M∗∗∗∗
1 = ((−∞,−3] ∪ [1,+∞)) ∩ Z.

Thus, for given F and G we obtain a difference equation of the second order, which leads
to desirable results. First, taking F (ν) = 1 and G(ν) = 0 for all ν ∈ Z, we then obtain the first
expansion described in Theorem A. Further, taking F (ν) = 0 and G(ν) = 1 for all ν ∈ Z, we
then obtain the second expansion from Theorem A.
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О НЕКОТОРЫХ РАЗЛОЖЕНИЯХ ζ(3) В НЕПРЕРЫВНЫЕ ДРОБИ
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Аннотация. В данной работе получены новые разложения ζ(3) в непрерывные дроби.

Ключевые слова: дзета-функция, ζ(3), разложения в непрерывные дроби.
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Abstract. In the survey, results on the existence, growth, uniqueness, and value distribution of

meromorphic (or entire) solutions of homogeneous linear partial differential equations of the second

order with polynomial coefficients that are similar or different from that of meromorphic solutions of

linear ordinary differential equations have been obtained. We have characterized those entire solutions

of a special partial differential equation that relate to Bessel functions and prove in general that

meromorphic solutions that grow much faster than the coefficient have zero Nevanlinna’s deficiency for

each non-zero complex value. It’s well-know result that if a nonconstant meromorphic function f on C

and its l-th derivative f (l) have no zeros for some l ≥ 2, then f is of the form f(z) = exp(Az + B) or

f(z) = (Az + B)−n for some constants A, B. We have extended this result to meromorphic functions

of several variables, by first extending the classic Tumura-Clunie theorem for meromorphic functions

of one complex variable to that of meromorphic functions of several complex variables by utilizing

Nevanlinna theory.

Keywords: meromorphic functions, homogeneous linear partial differential equation, holomorphic

coefficients, Nevanlinna’s value distribution theory.

Analytic properties or characterizations of meromorphic (or entire) solutions of some partial
differential equations (or system) of the first order have been exhibited clearly by several authors
(cf. [2], [13], [18], [19]). In this survey, we introduce a few results on meromorphic solutions
of homogeneous linear partial differential equations of the second order in two independent
complex variables

a0
∂2u

∂t2
+ 2a1

∂2u

∂t∂z
+ a2

∂2u

∂z2
+ a3

∂u

∂t
+ a4

∂u

∂z
+ a6u = 0, (1.1)

where ak = ak(t, z) are holomorphic functions for (t, z) ∈ Σ, where Σ is a region on C2. Basic
idea comes from S. N. Berns̆tĕın [3], H. Lewy [17], I. G. Petrovskĭı[20]. For more detail, see [15].
To prove these results, we used some methods in [5], [7], [11], [14], [21], [23] and [26].

First of all, we examine the following special differential equation:

t2
∂2u

∂t2
− z2∂

2u

∂z2
+ t

∂u

∂t
− z

∂u

∂z
+ t2u = 0. (1.2)

The work of Chung-Chun Yang was partially supported by Natural Science Foundation of China and second
author was partially supported by a UGC Grant of Hong Kong: Project 604106.
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Theorem 1.1 The differential equation (1.2) has an entire solution f(t, z) on C2 if and only
if f is an entire function expressed by the series

f(t, z) =
∞∑

n=0

n!cnJn(t)zn (1.3)

such that
lim sup

n→∞
|cn|1/n = 0, (1.4)

where Jn(t) is the first kind of Bessel’s function of order n. Moreover, the order ord(f) of the
entire function f satisfies

ρ ≤ ord(f) ≤ max{1, ρ},
where

ρ = lim sup
n→∞

2logn

log |cn|−1/n
. (1.5)

By definition, the order of f is defined by

ord(f) = lim sup
r→∞

log +log +M(r, f)

log r
,

where

log +x =

{
log x, if x ≥ 1;
0, if x < 1,

and
M(r, f) = max

|t|≤r,|z|≤r
|f(t, z)|.

G. Valiron [25] showed that each transcendental entire solution of a homogeneous linear ordinary
differential equation with polynomial coefficients is of finite positive order. However, Theorem 1.1
shows that Valiron’s theorem is not true for general partial differential equations. Here we
exhibit another example that the following equation

t2
∂2u

∂t2
− ∂2u

∂z2
+ t

∂u

∂t
= 0

has an entire solution exp(tez) of infinite order.

If 0 < λ = ord(f) <∞, we define the type of f by

typ(f) = lim sup
r→∞

log +M(r, f)

rλ
.

For the type of entire solutions of the equation (1.2), we have an analogue of Lindelöf-Pringsheim
theorem, its proof is essentially the same as that of the determining of the type for Taylor series
of entire functions of one complex variable.

Theorem 1.2 If f(t, z) is an entire solution of (1.2) defined by (1.3) and (1.4) such that
1 < λ = ord(f) <∞, then the type σ = typ(f) satisfies

eλσ = 2−λ/2 lim sup
n→∞

2n|cn|λ/(2n).
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Brosch [4] proved that if two nonconstant meromorphic functions f and g on C share three
distinct values c1, c2, c3 counting multiplicities, and if f is a solution of the differential equation

(
dw

dz

)n

=
2n∑

j=0

bj(z)w
j := P (z, w)

such that b0, b1, · · · , b2n (b2n 6≡ 0) are small functions of f (grow slower than f), furthermore if
P (z, ci) 6≡ 0 for i = 1, 2, 3, then f = g. To state a generalization of Brosch’s result to PDE, we
abbreviate

ut =
∂u

∂t
, utz =

∂2u

∂t∂z
, utt =

∂2u

∂t2
,

and so on, and set

Du = a0u
2
t + 2a1utuz + a2u

2
z,

Lu = a0utt + 2a1utz + a2uzz + a3ut + a4uz.

We make the following assumption:

(A) All coefficients ai in (1.1) are polynomials and when a6 = 0 there are no nonconstant
polynomials u satisfying the system

{
Du = 0,
Lu = 0.

For technical reason, here we study only meromorphic functions of finite orders. The order
of a meromorphic function of several variables may be defined by using its Nevanlinna’s
characteristic function (cf. [12], [22]).

Theorem 1.3 Assume that the assumption (A) holds. Let f(t, z) be a nonconstant meromorphic
solution of (1.1) such that ord(f) < ∞ and let g be a nonconstant meromorphic function of
finite order on C2. If f and g share 0, 1, ∞ counting multiplicity, one of the following five cases
is occurred:

(a) g = f ;

(b) gf = 1;

(c) a6 = 0, gf = f + g;

(d) a6 = 0, and there exist a constant b 6∈ {0, 1} and a polynomial β such that

f =
1

b− 1

(
eβ − 1

)
, g =

b

b− 1

(
1 − e−β

)
;

(e) a6 6= 0, f 2g2 = 3fg − f − g.
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When a6 6= 0, the case (b) may happen. For example, we consider the differential equation

∂2u

∂t2
+
∂2u

∂z2
− ∂u

∂t
− u = 0, (1.6)

which has an entire solution of order 1

f(t, z) = et+z .

Let’s compare f with the following entire function of order 1

g(t, z) = e−t−z.

Obviously, f and g share 0, 1, −1, ∞ counting multiplicity, but g 6= f , gf = 1. Now the
differential equation

Lu+Du+ a6 = 0

has a nonconstant polynomial solution

u(t, z) = t+ z.

The condition (A) is meaningful. For example, Theorem 1.1 shows that the differential
equation (1.2) has a lot of entire solutions of finite orders. Obviously, the condition (A) associated
to the differential equation (2) holds, and hence we can obtain the fact:

Corollary 1.4 Let f(t, z) be a nonconstant meromorphic solution of (1.2) such that ord(f) <
∞ and let g be a nonconstant meromorphic function of finite order on C2. If f and g share 0,
1, ∞ counting multiplicity, then we have either g = f or gf = 1 or f 2g2 = 3fg − f − g.

The case (b) in Theorem 1.3 may really happen for a6 = 0. For example, we consider the
differential equation

∂2u

∂t2
− ∂u

∂z
= 0, (1.7)

which has an entire solution f(t, z) = et+z of order 1 such that the assumption (A) holds
obviously. The entire solution f and the function g = e−t−z share 0, 1, ∞ counting multiplicity,
and satisfy gf = 1, that is, the case (b) in Theorem 1.3 happens for the case a6 = 0.

For a real number x, let [x] denote the maximal integer ≤ x. We give the following result
that is an analogue of Anastassiadis’s theorem [1] on uniqueness of entire functions of one
variable.

Theorem 1.5 Let f(t, z) and g(t, z) be transcendental entire solutions of (1.2) such that
ord(f) <∞, ord(g) <∞, and

∂2jf

∂tj∂zj
(0, 0) =

∂2jg

∂tj∂zj
(0, 0), j = 0, 1, ..., q,

where
q = max{[ord(f)], [ord(g)]}.

If there exists a complex number a with (a, f(0, 0)) 6= (0, 0) such that f and g share a counting
multiplicity, then we have f = g.
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Theorem 1.3 shows that when a6 = 0, global solutions of the equation (1.1) can be quite
complicated, however, when a6 6= 0, these solutions have normal properties. Next result also
supports this view. Theorem 1.6 extends a theorem (cf. Theorem 5.8 of [10]) on meromorphic
solutions of linear ordinary differential equations.

Theorem 1.6 Assume that all ak in (1.1) are entire functions on C2 which grow slower than
a meromorphic solution of equations (1.1) on C2. If a6 6≡ 0, then the deficiency of the solution
for each non-zero complex number is zero.

For example, the telegraph equation

∂2u

∂t2
− c2

∂2u

∂z2
+ 2α

∂u

∂t
+ α2u = 0

has entire solutions
u(t, z) = e−αt{f(z + ct) + g(z − ct)},

where f and g are entire functions on C. If α 6= 0, Theorem 1.6 shows that the deficiency of a
non-constant u(t, z) for each non-zero complex number a is zero, which means that the equation

f(z + ct) + g(z − ct) − aeαt = 0

has zeros.

Let Z+ denote the set of non-negative integers. For z = (z1, ..., zm) ∈ Cm, i = (i1, ..., im) ∈
Zm

+ , we write

∂zk
=

∂

∂zk

, k = 1, ..., m; ∂i = ∂i

z = ∂i1
z1
· · ·∂im

zm
; |i| = i1 + · · ·+ im.

We have interesting in the following problem:

Conjecture 1.7 If f is a meromorphic function in Cm such that f and ∂lf have no zeros for
some l = (l1, ..., lm) ∈ Zm

+ with lk ≥ 2 (1 ≤ k ≤ m) and such that the set of poles of f is
algebraic, then there exists a partition

{1, ..., m} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Ii ∩ Ij = ∅ (i 6= j), and

f(z1, ..., zm) = exp

(
∑

i∈I0

Aizi +B0

)
k∏

j=1



∑

i∈Ij

Aizi +Bj




−nj

,

where Ai, Bj are constants with Ai 6= 0, and nj are positive integers.

This is open if m > 1. For detail discussion, see [16]. When m = 1, the conclusion of
Conjecture 1.7 was obtained by Tumura [24], and Hayman [8] gave a proof for the case l =
lm = 2. Later, as a correction of the gap in Tumura’s proof, Clunie [6] gave a valid proof of the
assertion for any l > 1.
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Let f be a meromorphic function in Cm which we shall assume to be not constant. We shall
be concerned largely with meromorphic functions h which are polynomials in f and the partial
derivatives of f with coefficients a of the form

‖ T (r, a) = o(T (r, f)), (1.8)

where T (r, f) is the Nevanlinna’s characteristic function of f , and where the symbol “‖"means
that the relation holds outside a set of r of finite linear measure. Such functions h will be called
differential polynomials in f . To study Conjecture 1.7, the following result will play a crucial
role.

Theorem 1.8 Suppose that f is meromorphic and not constant in Cm, that

g = fn + Pn−1(f), (1.9)

where Pn−1(f) is a differential polynomial of degree at most n− 1 in f , and that

‖ N(r, f) +N

(
r,

1

g

)
= o(T (r, f)),

where N(r, f) is the Nevanlinna’s valence function of f for poles. Then

g =
(
f +

a

n

)n

,

where a is a meromorphic function of the form (1.8) in Cm determined by the terms of degree
n− 1 in Pn−1(f) and by g.

Whenm = 1, Theorem 1.8 is due to Hayman ([9], Theorem 3.9, p.69). By using Theorem 1.8,
we can give a proof of Conjecture 1.7, under a condition on non-vanishing of the partial
derivatives of order > 1 that differs from the one posed in the conjecture, as follows:

Theorem 1.9 If f is a meromorphic function in Cm such that f , ∂l1
z1
f , ..., ∂lm

zm
f have no zeros

for some lk ≥ 2 (1 ≤ k ≤ m) and such that the set of poles of f is algebraic, then there exists
a partition

{1, ..., m} = I0 ∪ I1 ∪ · · · ∪ Ik
such that Ii ∩ Ij = ∅ (i 6= j), and

f(z1, ..., zm) = exp

(
∑

i∈I0

Aizi +B0

)
k∏

j=1



∑

i∈Ij

Aizi +Bj




−nj

,

where Ai, Bj are constants with Ai 6= 0, and nj are positive integers.

In particular, if f is entire, the function f in Theorem 1.9 has only an exponential form

f(z1, ..., zm) = exp (A1z1 + · · ·+ Amzm +B0) .

We shall utilize the methods developed in [9], [12] and [13] and generalized Clunie lemma to
prove the main results.
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Аннотация. В работе исследуются вопросы существования, единственности и распределния

значений мероморфных (или целых) решений линейных дифференциальных уравнений в част-

ных производных второго порядка с полиномиальными коэффициентами.
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Abstract. In the paper, we study the uniqueness and the shared fixed-points of meromorphic

functions and prove two main theorems which improve the results of Fang and Fang and Qiu.
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1 Introduction and main results

Schwick [8] was the first to draw a connection between values shared by functions in F (and
their derivatives) and the normality of the family F. Specifically, he showed that if there exist
three distinct complex numbers a1, a2, a3 such that f and f ′ share aj (j = 1, 2, 3) IM in D for
each f ∈ F, then F is normal in D.

In 2006, Wang and Yi [9]proved a uniqueness theorem for entire functions that share a
polynomial with their derivatives, as follows

Theorem A. Let f be a nonconstant entire function, let Q(z) be a polynomial of degree
q ≥ 1, and let k > q be an integer. If f and f ′ share Q(z) CM, and if f (k)(z) − Q(z) = 0
whenever f(z) −Q(z) = 0, then f = f ′.

According to BlochЎЇs principle, numerous normality criteria have been obtained by starting
from Picard type theorems. On the other hand, by Nevanlinna’s famous five point theorem and
Montel’s theorem, it is interesting to establish normality criteria by using conditions known
from a sharing values theorem.

In this note, we obtain the following normal family related to Theorem A.

Theorem 1.1 Let F be a family of holomorphic functions in a domain D; let Q(z) be a
polynomial of degree q ≥ 1, and let k ≥ 2q + 1 be an integer. If, for each f ∈ F , we have

f(z) = Q(z) ⇋ f ′(z) = Q(z) ⇒ f (k) = Q(z),

then F is normal in D.

In order to prove theorem 1.1, we need the following results, which are interesting in their own
rights.

Proposition 1. Let F be a family of holomorphic functions in a domain D; let h(z) be a
polynomial of degree q ≥ 1; let k > q be an integer. If, for each f ∈ F, we have h(z) = 0 ⇒
f(z) = 0 and f(z) = 0 ⇋ f ′(z) = h(z) ⇒ |f (k)(z)| ≤ M , where M is a positive number, then
F is normal in D.

The author was supported by the NSF of China (10771121), the NSF of Guangdong Province
(9452902001003278) and Excellent Young Fund of Department of Education of Guangdong (LYM08097).
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Proposition 2. Let F be a family of holomorphic functions in a domain D; let Q(z) be
a polynomial of degree q ≥ 1; let k ≥ 2q + 1 be an integer. If, for each f ∈ F, we have
Q(z) −Q′(z) = 0 ⇒ f(z) 6= 0 and f(z) = 0 ⇋ f ′(z) = Q(z) −Q′(z) ⇒ f (k)(z) = Q(z), then F

is normal in D.

2 Some Lemmas

Lemma 2.1 [9] Let F be a family of functions meromorphic in a domain D, all of whose
zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A
whenever f(z) = 0, if F is not normal at z0 ∈ D, then for each 0 ≤ α ≤ k there exist,

(a) points zn ∈ D, zn → z0;
(b) functions fn ∈ F, and
(c) positive number ρn → 0 such that ρ−α

n fn(zn + ρnζ) = gn(ζ) → g(ζ) locally uniformly,
where g is a nonconstant meromorphic function in C, all of whose zeros have multiplicity at
least k, such that g♯(ζ) ≤ g♯(0) = kA+1. In particular, if F is a family of holomorphic functions,
then ρ(g) ≤ 1.

Lemma 2.2 [2] Let g be a nonconstant entire function with ρ(g) ≤ 1; let k ≥ 2 be a positive
integer; and let a be a nonzero finite value. If g(z) = 0 ⇒ g′(z) = a, and g′(z) = a⇒ g(k)(z) = 0,
then g(z) = a(z − z0), where z0 is a constant.

Lemma 2.3 [2] Let F be a family of holomorphic functions in a domain D; let k ≥ 2 be a
positive integer; and let α be a function holomorphic in D, such that α(z) 6= 0 for z ∈ D. If for
every f ∈ F, f(z) = 0 ⇒ f ′(z) = α(z) and f ′(z) = α(z) ⇒ |f (k)(z)| ≤ h, where h is a positive
number, then F is normal in D.

In order to prove theorem 1.1, we need some definitions.
Let ∆ = {z : |z| < r0}, let Q(z) be a polynomial of degree q ≥ 1 and R(z) = Q(z)−Q′(z) =

zmP (z), P (z) 6= 0, when z ∈ ∆. Define that Qa(z) = Q(z + a), where a is a constant, then

Ra(z) = Qa(z) −Q′
a(z) = (z + a)mPa(z).

Define λa = f ′−Ra

f
and λa(0) 6= 0, where f is holomorphic function in ∆. Thus we get f ′ =

λaf+Ra = λa1f+µa1. By mathematic induction we get f (k) = λakf +µak (k ≥ q+2), where

µak = Ra{λk−1
a + Pk−2[λa]} +R′

a{λk−2
a + Pk−3[λa]} + ... +R(q)

a {λk−(q+1)
a + Pk−(q+2)[λa]} (2.1)

and Pk−2[λa], . . . , Pk−(q+2)[λa] are differential polynomial in λa with degree at most k−2, . . . , k−
(q + 2) respectively. Let µak(0) −Qa(0) 6= 0. Define ψa(0) 6= 0 where

ψa =
Raf

(k) −Qaf
′

f
. (2.2)

Define ϕa(0) 6= 0 where

ϕa = −[1 + (
1

ψa

)′Qa +
1

ψa

Q′
a]Ra −

1

ψa

QaR
′
a. (2.3)
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Lemma 2.4 Let f(z) be analytic in the disc ∆ = {z : |z| < r0}; let a be a complex number
such that |a| < r0; let k ≥ q+ 2 be a positive integer. If Qa, Ra, λa, µak, ψa and ϕa are defined
as above; if f(0) 6= 0, |f ′ − Ra|z=0 6= 0, Ra = 0 ⇒ f(z) 6= 0 and

f(z) = 0 ⇋ f ′(z) = Ra ⇒ f (k)(z) = Qa,

then

T (r, f) ≤ LD[r, f ] +M log | f ′ −Ra

ψ9
aϕa(µak −Qa)f

|z=0 + log |f(0)|, (2.4)

where

LD[r, f ] = M1[m(r,
f ′

f
) +m(r,

f (k)

f
) +m(r,

f (k)

f ′
) +m(r,

f ′′ − R′
a

f ′ −Ra
) +m(r,

f (k)

f ′ − Ra
)]

+M1m(r,
f (k+1)

f ′ −Ra
) +M2[m(r,

ψ′
a

ψa
) +m(r,

λ′a
λa

) + ... +m(r,
λ

(k−2)
a

λa
)]

+M3[m(r, Ra) +m(r, R′
a) + . . .+m(r, R(q)

a ) +m(r,Qa) +m(r,Q′
a) + log 2],

and M1,M2,M3 are positive numbers.

Lemma 2.5 [1] Let U(r) be a nonnegative, increasing function on an interval [R1, R2](0 <
R1 < R2 < +∞); let a, b be two positive constants satisfying b > (a + 2)2; and let

U(r) < a{log +U(ρ) + log
ρ

ρ− r
} + b

whenever R1 < r < ρ < R2. Then, for R1 < r < R2,

U(r) < 2alog
R2

R2 − r
+ 2b.

Lemma 2.6 [1] Let g(z) be a transcendental entire function. Then

lim sup
|z|→∞

|z|g♯(z) = +∞.

3 Proof of Proposition 1

Let z0 ∈ D. If h(z0) 6= 0, by Lemma 2.3, F is normal at z0. Now suppose that h(z0) = 0. Without
loss of generality, we may assume that z0 = 0, ∆ = {z : |z| < δ} ∈ D and h(z) = zmb(z), where
b(0) = 1 and b(z) 6= 0 (z ∈ ∆). We shall prove that F is normal at z = 0.

Let F1 = {F = f
zm : f ∈ F}. We know that if F1 is normal at z = 0, then F is normal at

z = 0. Thus we only need to prove F1 is normal at z = 0.
For each f ∈ F, from h(z) = 0 ⇒ f(z) = 0, we get z = 0 is a zero of f . Thus we have

f(z) = anz
n + an+1z

n+1 + ... (an 6= 0) (n ≥ 1),

and
f ′(z) − h(z) = nanz

n−1 + (n+ 1)an+1z
n + ...− (zm + ...) .
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By the assumption f(z) = 0 ⇋ f ′(z) = h(z), we get

f =
1

m+ 1
zm+1 + am+2z

m+2 + ... (3.1)

Hence we get F1 is a family of holomorphic functions in ∆. Next we prove ∀ F = f
zm ∈ F1,

F = 0 ⇒ |F ′| ≤M, where M = maxz∈∆ |b(z)| ≥ 1.
Suppose that F (a0) = 0, then f(a0) = 0.
If a0 6= 0, we get F ′(a0) = f ′(a0)

am
0

− mf(a0)

am+1
0

= b(a0).

If a0 = 0, we get F ′(a0) = b(a0) − m
m+1

= 1 − m
m+1

= 1
m+1

. Thus we get F = 0 ⇒ |F ′| ≤M .
Now we prove that F1 is normal at z = 0. Suppose on the contrary that F1 is not normal

at z = 0, then by Lemma 2.1, we can find zn → 0, ρn → 0 and fn ∈ F such that

gn(ζ) = ρ−1
n

fn(zn + ρnζ)

(zn + ρnζ)m
→ g(ζ) (3.2)

locally uniformly on C, where g is a nonconstant entire function such that g♯(ζ) ≤ g♯(0) = M+1.
In particular ρ(g) ≤ 1. Without loss of generality, we assume that lim

n→∞

zn

ρn
= c ∈ C. In the

following we consider two cases.
Case 1: c = ∞. Then zn 6= 0 and ρn

zn
→ 0 as n → ∞. Set hn(ζ) = ρ−1

n
fn(zn+ρnζ)

zm
n

. Then by
(3.2), we get

hn(ζ) = ρ−1
n

fn(zn + ρnζ)

(zn + ρnζ)m
(1 +

ρn

zn
ζ)m → g(ζ). (3.3)

We claim:
g(ζ) = 0 ⇒ g′(ζ) = 1 and g′(ζ) = 1 ⇒ g(k)(ζ) = 0.

Suppose that g(ζ0) = 0, then by Hurwitz’s Theorem, there exist ζn, ζn → ζ0, such that (for n
sufficiently large)

hn(ζn) = ρ−1
n

fn(zn + ρnζn)

zm
n

= 0.

Thus fn(zn + ρnζn) = 0, by the assumption we have f ′
n(zn + ρnζn) = (zn + ρnζn)

mb(zn + ρnζn),
then we derive that

g′(ζ0) = lim
n→∞

f ′
n(zn + ρnζn)

zm
n

= lim
n→∞

b(zn + ρnζn)(1 +
ρn

zn
ζn)

m = b(0) = 1.

Thus g(ζ) = 0 ⇒ g′(ζ) = 1. Next we prove g′(ζ) = 1 ⇒ g(k)(ζ) = 0. By (3.3) we know

f ′
n(zn + ρnζ)

(zn + ρnζ)mb(zn + ρnζ)
=

f ′
n(zn + ρnζ)

zm
n (1 + ρn

zn
ζ)mb(zn + ρnζ)

→ g′(ζ)

We suppose that g′(ζ0) = 1, obviously g′ 6≡ 1, for otherwise g♯(0) ≤ g′(0) = 1 < M + 1,
which is a contradiction. Hence by Hurwitz’s Theorem, there exist ζn, ζn → ζ0, such that (for
n sufficiently large)

f ′
n(zn + ρnζn)

(zn + ρnζn)mb(zn + ρnζn)
= 1,
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Thus f ′
n(zn + ρnζn) = h(zn + ρnζn), by the assumption we get |f (k)

n (zn + ρnζn)| ≤M . Then

|g(k)(ζ0)| = lim
n→∞

|ρ
k−1
n

zm
n

f (k)
n (zn + ρnζn)| ≤ lim

n→∞
|ρ

k−1
n

zm
n

|M = 0.

Thus we prove the Claim. By Lemma 2.2, we get g = ζ − b, where b is a constant. Thus we
have g♯(0) ≤ 1 < M + 1, which is a contradiction.

Case 2: c 6= ∞. We set

Gn(ζ) =
fn(ρnζ)

ρm+1
n

. (3.4)

Then

Gn(ζ) = ρ−1
n

fn(zn + ρn(ζ − zn

ρn
))

(zn + ρn(ζ − zn

ρn
))m

ζm → g(ζ − c)ζm = G(ζ)

We know that z = 0 is zero of fn with multiplicity m+ 1, then we get 0 is a zero of G(ζ) with
multiplicity m+ 1 and

G(m+1)(0) = lim
n→∞

G(m+1)
n (0) = m! (3.5)

If G′(ζ) ≡ ζm, we derive that G(ζ) = 1
m+1

ζm+1. Hence we obtain g(ζ) = 1
m+1

(ζ + c). It
follows that g♯(0) ≤ 1

m+1
< M+1, a contradiction. Thus G′(ζ) 6≡ ζm. Using the same argument

as in the proof of Case 1, we get

G(ζ) = 0 ⇔ G′(ζ) = ζm and G′(ζ) = ζm ⇒
{
G(k)(ζ) ≤M, k = m+ 1,

G(k)(ζ) =0, k ≥ m+ 2.

Suppose G(ζ) is a polynomial. Let

G(ζ) = bqζ
q + bq−1ζ

q−1 + ... + bm+1ζ
m+1 (bm+1 6= 0). (3.6)

From G(ζ) = 0 ⇔ G′(ζ) = ζm, we get

G(ζ) = ζ(G′(ζ) − ζm)A. (3.7)

Thus, by (3.6) and (3.7) we have G(ζ) = bqζ
q − 1

q−(m+1)
ζm+1 (q ≥ m+ 2) or G(ζ) = Aζm+1,

and from (3.5), we get G(ζ) = 1
m+1

ζm+1. Then G′(ζ) ≡ ζm, a contradiction.
In the following we assume that G(ζ) is a transcendental entire function.
Let us consider the family T = {tn : tn(ζ) = G((2m)nζ)

(2m)(m+1)n}, we see that tn is a entire function
satisfying

tn(ζ) = 0 ⇔ t′n(ζ) = ζm ⇒
{
tn(ζ) ≤M, k = m+ 1,

tn(ζ) =0, k ≥ m+ 2.

By Lemma 2.3, we have T is normal on D1 = {ζ : (1/2)m ≤ |ζ | ≤ 2m}, thus there exists a M1

satisfying

t♯n(ζ) =
(2m)(m+2)n|G′((2m)nζ)|

(2m)2(m+1)n + |(G(2m)nζ)|2 ≤ M1.

Set r(z) = G(z)
zm+1 , then r(z) is a transcendental entire function. We know that for each z ∈ C,

there exists a integer n such that z = (2m)nζ , where (1/2)m ≤ |ζ | ≤ 2m. We can get

|z|r♯(z) ≤ (2m)3m+4t♯n(ζ) +
m+ 1

2
≤ (2m)3m+4M1 +

m+ 1

2
. (3.8)
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From Lemma 2.6, we get
lim sup
|z|→∞

|z|r♯(z) = +∞,

which contradicts with (3.8).
Thus, we prove that F1 is normal at z = 0. Hence F is normal at z = 0.

4 Proof of Proposition 2

Let z0 ∈ D. If [Q(z) − Q′(z)]|z=z0 6= 0, by Lemma 2.3, F is normal at z0. Now suppose that
[Q(z) −Q′(z)]|z=z0 = 0. Without loss of generality, we may assume that z0 = 0, ∆ = {z : |z| <
δ} ∈ D and R(z) = Q(z) − Q′(z) = zmP (z), where P (z) 6= 0 (z ∈ ∆). We shall prove that F

is normal at z = 0.
Suppose on the contrary that F is not normal at z = 0, then by Lemma 2.1, we can find

zn → 0, ρn → 0 and fn ∈ F such that

gn(ζ) = fn(zn + ρnζ) → g(ζ) (4.1)

locally uniformly on C, where g is a nonconstant entire function. Without loss of generality, we
assume that

lim
n→∞

zn

ρn
= c ∈ C.

First, we shall prove that g(ζ) is a transcendental entire function. In fact, we only need to prove
that g(ζ) 6= 0. The argument given in the proof of Proposition 1 shows that

g(ζ) = 0 ⇒ g′(ζ) = 0,

thus g only has multiple zeros. Suppose ζ0 is a zero of g(ζ) with multiplicity s(≥ 2), then
g(s)(ζ0) 6= 0. Thus there exists a positive number δ, such that

g(ζ) 6= 0, g′(ζ) 6= 0, g(s)(ζ) 6= 0 (4.2)

on Do
δ = {ζ : 0 < |ζ − ζ0| < δ}. By (4.1) and Rouché theorem, there exist ζn,j(j = 1, 2, ..., s) on

Dδ/2 = {ζ : |ζ − ζ0| < δ/2} such that

gn(ζn,j) = fn(zn + ρnζn,j) = 0 (j = 1, 2, ..., s).

It follows from R(z) = 0 ⇒ f(z) 6= 0 and f(z) = 0 ⇋ f ′(z) = R(z) that f ′
n(zn + ρnζn,j) =

R(zn + ρnζn,j) 6= 0. Thus

g′n(ζn,j) = ρnf
′
n(zn + ρnζn,j) = ρnR(zn + ρnζn,j) 6= 0(j = 1, 2, ..., s),

so each ζn,j is a simple zero of gn(ζ), that is ζn,j 6= ζn,i(1 ≤ i 6= j ≤ s). On the other hand

lim
n→∞

g′n(ζn,j) = lim
n→∞

ρnR(zn + ρnζn,j) = 0

From (4.2), we get
lim

n→∞
ζn,j = ζ0 (j = 1, 2, ..., s).
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Noting that (4.2) and g′n(ζ) − ρnR(zn + ρnζ) has s zeros ζn,j(j = 1, 2, ..., s) in Dδ/2, then ζ0 is
a zero of g′(ζ) of multiplicity s, and thus g(s)(ζ0) = 0. This is a contradiction. Hence g(ζ) 6= 0
and g(ζ) is a transcendental entire function.

Now we consider five cases.
Case 1: There exist infinitely many {nj} such that

f ′
nj

(znj
+ ρnj

ζ) ≡ R(znj
+ ρnj

ζ).

It follows that g′nj
(ζ) ≡ ρnj

R(znj
+ ρnj

ζ). Let j → ∞, we deduce that g′(ζ) ≡ 0, which
contradicts that g is transcendental.

Case 2: There exist infinitely many {nj} such that ψnj
(znj

+ρnj
ζ) ≡ 0, where ψn = Rf

(k)
n −Qf ′

n

fn
.

Thus we have

(znj
+ ρnj

ζ)mP (znj
+ ρnj

ζ)
g

(k)
nj (ζ)

ρk
nj

≡ Q(znj
+ ρnj

ζ)
g′nj

(ζ)

ρnj

and
g

(k)
nj (ζ)

g′nj
(ζ)

=
Q(znj

+ ρnj
ζ)ρ

(k−(m+1))
nj

P (znj
+ ρnj

ζ)(
znj

ρnj

+ ζ)m
.

Noting that k ≥ 2q + 1 ≥ 2m + 1, let j → ∞, we deduce that g(k)(ζ) ≡ 0, which contradicts
that g is transcendental.

Case 3: There exist infinitely many {nj} such that ϕnj
(znj

+ ρnj
ζ) ≡ 0, where

ϕn = −[1 + (
1

ψn
)′Q+

1

ψn
Q′]R− 1

ψn
QR′.

and ψn is defined as above. Let

Γ(ζ) = ρk−(m+1)
nj

[(
znj

ρnj

+ ζ)m−1P1(znj
+ ρnj

ζ)g(k)
nj

(ζ) + (
znj

ρnj

+ ζ)mP (znj
+ ρnj

ζ)g(k+1)
nj

(ζ)

− ρk−m
nj

Q′(znj
+ ρnj

ζ)g′nj
(ζ) − ρk−(m+1)

nj
Q(znj

+ ρnj
ζ)g′′nj

(ζ)].

Then

−Γ(ζ)Q(znj
+ ρnj

ζ)

(
znj

ρnj

+ ζ)mP (znj
+ ρnj

ζ)g
(k)
nj (ζ) −Q(znj

+ ρnj
ζ)ρ

k−(m+1)
nj g′nj

(ζ)
+Q′(znj

+ ρnj
ζ)ρk−m

nj

+ (
znj

ρnj

+ ζ)mP (znj
+ ρnj

ζ)
g

(k)
nj (ζ)

gnj
(ζ)

=
Q(znj

+ ρnj
ζ)ρ

k−(m+1)
nj P1(znj

+ ρnj
ζ)

(
znj

ρnj

+ ζ)P (znj
+ ρnj

ζ)
,

where R′(z) = zm−1P1(z).
Thus, let j → ∞, we get g(k)(ζ) ≡ 0, which contradicts that g is transcendental.
Case 4: There exist infinitely many {nj} such that µknj

(znj
+ ρnj

ζ) ≡ Q(znj
+ ρnj

ζ) where

µkn = R{λk−1
n + Pk−2[λn]} +R′{λk−2

n + Pk−3[λn]} + ...+R(q){λk−(q+1)
n + Pk−(q+2)[λn]},

and λn = f ′

n−R
fn

. Thus, let j → ∞, we get

(
g′

g
)k−(m+1)[(c+ ζ)mP (0)(

g′

g
)m +R(m)(0)] ≡ 0.
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Hence g′ ≡ 0 or (c+ ζ)mP (0)(g′

g
)m +R(m)(0) ≡ 0, which contradicts that g is a transcendental

entire function.
Case 5: There exist finitely many {nj} such that f ′

nj
(znj

+ ρnj
ζ) ≡ R(znj

+ ρnj
ζ), ψnj

(znj
+

ρnj
ζ) ≡ 0, ϕnj

(znj
+ ρnj

ζ) ≡ 0 and µknj
(znj

+ ρnj
ζ) ≡ Q(znj

+ ρnj
ζ).

For all n we may suppose that f ′
nj

(znj
+ ρnj

ζ) 6≡ R(znj
+ ρnj

ζ), ψnj
(znj

+ ρnj
ζ) 6≡ 0,

ϕnj
(znj

+ ρnj
ζ) 6≡ 0 and µknj

(znj
+ ρnj

ζ) 6≡ Q(znj
+ ρnj

ζ).
Take ζ0 ∈ C such that g(j)(ζ0) 6= 0 (j = 0, 1, ..., k). In case c 6= ∞, choose ζ0 to satisfy the

additional conditions that ζ0 6= −c and

(c+ ζ0)
mP (0)(

g′(ζ0)

g(ζ0)
)m +R(m)(0) 6= 0.

Noting that k ≥ 2q + 1 ≥ 2m + 1, this facts imply that Kn =→ 0 as n → ∞, so that
logKn → −∞ as n→ ∞.

For n = 1, 2, 3, ..., put
hn(z) = fn(zn + ρnζ0 + z)

Since zn + ρnζ0 → 0 as n → ∞, it follows that (for sufficiently large n) hn is defined and
holomorphic on |z| < 1

2
. Denote

an = zn + ρnζ0.

Then, for sufficiently large n, hn(0) 6= 0, h′n(0) −Ran
(0) 6= 0. By the assumption we get

hn(z) = 0 ⇋ h′n(z) = Ran
⇒ h(k)

n (z) = Qan
.

Let a = an and f(z) = hn(z) in Lemma 2.4, then we get

hn(−an) = fn(0) 6= 0, ψan
(0) = ψn(an) 6= 0, ϕan

(0) = ϕn(an) 6= 0,

[µank −Qan
]|z=0 = [µkn −Q]|z=an

6= 0,

thus hn(z) satisfies the assumption of Lemma 2.4.
Now applying Lemma 2.4 with r0 = 1

2
, and noting that the last three terms in (2.4) are

bounded for 0 < r < 1/3, we obtain that, for sufficiently large n and 0 < r < 1/3,

T (r, hn) ≤M1[m(r,
h′n
hn

) +m(r,
h

(k)
n

hn
) +m(r,

h
(k)
n

h′n
) +m(r,

h′′n −R′
an

h′n −Ran

) +m(r,
h

(k)
n

h′n − Ran

)]

+M1m(r,
h

(k+1)
n

h′n −Ran

) +M2[m(r,
ψ′

an

ψan

) +m(r,
λ′an

λan

) + ...+m(r,
λ

(k−2)
an

λan

)].

We can obtain, for 0 < r < τ < 1/3,

T (r, hn) ≤ Ck{1 + log + 1

r
+ log + 1

τ − r
+ log +T (τ, hn)

+ log +T (τ, h′n) + log +T (τ, ψan
) + log +T (τ, λan

)}.
(4.3)

Observe that T (τ, h′n) = m(τ, h′n) ≤ m(τ, hn) + m(r, h′

n

hn
), hence for 1/4 < r < ρ < 1/3 with

τ = (r + ρ)/2. From the above we obtain

T (r, hn) ≤ Ck(1 + log + 1

ρ− r
+ log +T (ρ, hn)).
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By Lemma 2.5 it then follows that T (1/4, hn) ≤ A, where A is a constant independent of
n. Thus fn(z) is uniformly bounded for sufficiently large n and |z| < 1/8. However, from
ρ2

nf
′′
n(zn + ρnζ0) = g′′n(ζ0) → g′′(ζ0) 6= 0 we see that f(z) cannot bounded in |z| < 1/8. This is a

contradiction, so the proof is complete.

5 Proof of Theorem 1.1

Let G = {g = f − Q : f ∈ F} and R(z) = Q(z) − Q′(z). Obviously, G is normal in D if and
only if F is normal in D. It follows from our assumption that, for any g ∈ G, we have

g = 0 ⇋ g′ = R⇒ g(k) = Q. (5.1)

Let z0 ∈ D. Now we prove that G is normal at z0. Let {gn} ⊂ G be a sequence.
If R(z0) 6= 0, then there exists a positive number δ such that ∆δ = {z ∈ D : |z−z0| < δ} ⊂ D

and R(z) 6= 0 in ∆δ. Then by Lemma 2.3, {gn} is normal at z0.
If R(z0) = 0, then there exists a positive number δ such that ∆δ = {z ∈ D : |z−z0| < δ} ⊂ D

and R(z) 6= 0 in ∆δ\{z0}. Suppose {gn} has a subsequence say, without loss of generality, itself,
such that gn(z0) = 0, then {gn} is normal at z0 by Proposition 1. Suppose gn(z0) 6= 0 for all
but finite many of {gn}, then {gn} is normal at z0 by Proposition 2.

Thus F is normal in D and hence Theorem 1.1 is proved.
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Soc. Roy. Sci. Liége(3). 17, 1932.

2. J.M. Chang, M.L. Fang and L. Zalcman. Normal families of holomorphic functions, Illinois
Journal of Mathematics. 48(2004), 319-337.

3. J. M. Chang, M. L. Fang. Normality and shared functions of holomorphic functions and
their derivatives, Michigan Math. J. 53(2005), 625-645.

4. J. Clunie, W.K. Hayman. The spherical derivative of integral and meromorphic functions,
Comment Math. Helvet. 40(1966), 117-148.

5. K.L. Hiong. Sur les fonctions holomorphes dont les dérivées admettent une valeur exce-
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Ключевые слова: мероморфная функция, неподвижная точка, распределенные мно-

гочлены.



УДК 517.55

SPARSE HYPERGEOMETRIC SYSTEMS

Timur Sadykov

Institute of Mathematics, Siberian Federal University,

pr. Svobodny, 79, Krasnoyarsk, 660041, Russia, e-mail: sadykov@lan.krasu.ru

Abstract. We study the approach to the theory of hypergeometric functions in several variables

via a generalization of the Horn system of differential equations. A formula for the dimension of its

solution space is given. Using this formula we construct an explicit basis in the space of holomorphic

solutions to the generalized Horn system under some assumptions on its parameters.

Keywords: hypergeometric functions, Horn system of differential equations, Mellin system.

1 Introduction

There exist several approaches to the notion of a hypergeometric function depending on several
complex variables. It can be defined as the sum of a power series of a certain form (such series
are known as Γ-series) [10], as a solution to a system of partial differential equations [9], [11],
[1], or as a Mellin-Barnes integral [15]. In the present paper we study the approach to the theory
of hypergeometric functions via a generalization of the Horn system of differential equations.
We consider the system of partial differential equations of hypergeometric type

xuiPi(θ)y(x) = Qi(θ)y(x), i = 1, . . . , n, (1.1)

where the vectors ui = (ui1, . . . , uin) ∈ Zn are assumed to be linearly independent, Pi, Qi are
nonzero polynomials in n complex variables and θ = (θ1, . . . , θn), θi = xi

∂
∂xi
.We use the notation

xui = xui1
1 . . . xuin

n . If {ui}n
i=1 form the standard basis of the lattice Z

n then the system (1.1)
coincides with a classical system of partial differential equations which goes back to Horn and
Mellin (see [13] and § 1.2 of [10]). In the present paper the system (1.1) is referred to as the
sparse hypergeometric system (or generalized Horn system) since, in general, its series solutions
might have many gaps.

A sparse hypergeometric system can be easily reduced to the classical Horn system by a
monomial change of variables. The main purpose of the present paper is to discuss the relation
between the sparse and the classical case in detail for the benefit of a reader interested in explicit
solutions of hypergeometric D-modules. We also furnish several examples which illustrate crucial
properties of the singularities of multivariate hypergeometric functions. Most of the statements
in this article are parallel to or follow from the results in [16].

A typical example of a sparse hypergeometric system is the Mellin system of equations
(see [7]). One of the reasons for studying sparse hypergeometric systems is the fact that knowing
the structure of solutions to (1.1) allows one to investigate the so-called amoeba of the singular
locus of a solution to (1.1). The notion of amoebas was introduced by Gelfand, Kapranov and
Zelevinsky (see [12], Chapter 6, § 1). Given a mapping f(x), its amoeba Af is the image of the
hypersurface f−1(0) under the map (x1, . . . , xn) 7→ (log |x1|, . . . , log |xn|). In section 5 we use the

The author was supported by the Russian Foundation for Basic Research, grant 09-01-00762-a, by grant
no. 26 for scientific research groups of Siberian Federal University and by the "Dynasty"foundation.
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results on the structure of solutions to (1.1) for computing the number of connected components
of the complement of amoebas of some rational functions. The problem of describing the class
of rational hypergeometric functions was studied in a different setting in [5], [6]. The definition
of a hypergeometric function used in these papers is based on the Gelfand-Kapranov-Zelevinsky
system of differential equations [9], [10], [11].

Solutions to (1.1) are closely related to the notion of a generalized Horn series which is
defined as a formal (Laurent) series

y(x) = xγ
∑

s∈Z
n

ϕ(s)xs, (1.2)

whose coefficients ϕ(s) are characterized by the property that ϕ(s+ui) = ϕ(s)Ri(s). Here Ri(s)
are rational functions. We also use notations γ = (γ1, . . . , γn) ∈ Cn, Re γi ∈ [0, 1), xs =
xs1

1 . . . xsn
n . In the case when {ui}n

i=1 form the standard basis of Zn we get the definition of
the classical Horn series (see [10], § 1.2).

In the case of two or more variables the generalized Horn system (1.1) is in general not
solvable in the class of series (1.2) without additional assumptions on the polynomials Pi, Qi.
In section 2 we investigate solvability of hypergeometric systems of equations and describe
supports of solutions to the generalized Horn system. The necessary and sufficient conditions
for a formal solution to the system (1.1) in the class (1.2) to exist are given in Theorem 2.1.

In section 3 we consider the D-module associated with the generalized Horn system. We give
a formula which allows one to compute the dimension of the space of holomorphic solutions
to (1.1) at a generic point under some additional assumptions on the system under study
(Theorem 3.3). We give also an estimate for the dimension of the solution space of (1.1) under
less restrictive assumptions on the parameters of the system (Corollary 3.4).

In section 4 we consider the case when the polynomials Pi, Qi can be factorized up to
polynomials of degree 1 and construct an explicit basis in the space of holomorphic solutions to
some systems of the Horn type. We show that in the case when Ri(s+uj)Rj(s) = Rj(s+ui)Ri(s),
Qi(s + uj) = Qi(s) and degQi(s) > degPi(s), i, j = 1, . . . , n, i 6= j, there exists a basis in the
space of holomorphic solutions to (1.1) consisting of series (1.2) if the parameters of the system
under study are sufficiently general (Theorem 4.1).

In section 5 we apply the results on the generalized Horn system to the problem of describing
the complement of the amoeba of a rational function. We show how Theorem 2.1 can be used
for studying Laurent series developments of a rational solution to (1.1). A class of rational
hypergeometric functions with minimal number of connected components of the complement
of the amoeba is described.

2 Supports of solutions to sparse hypergeometric systems

Suppose that the series (1.2) represents a solution to the system (1.1). Computing the action
of the operator xuiPi(θ) − Qi(θ) on this series we arrive at the following system of difference
equations

ϕ(s+ ui)Qi(s+ γ + ui) = ϕ(s)Pi(s+ γ), i = 1, . . . , n. (2.1)

The system (2.1) is equivalent to (1.1) as long as we are concerned with those solutions to the
generalized Horn system which admit a series expansion of the form (1.2). Let Zn +γ denote the
shift in Cn of the lattice Zn with respect to the vector γ. Without loss of generality we assume
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that the polynomials Pi(s), Qi(s + ui) are relatively prime for all i = 1, . . . , n. In this section
we shall describe nontrivial solutions to the system (2.1) (i.e. those ones which are not equal
to zero identically). While looking for a solution to (2.1) which is different from zero on some
subset S of Zn we shall assume that the polynomials Pi(s), Qi(s), the set S and the vector γ
satisfy the condition

|Pi(s+ γ)| + |Qi(s+ γ + ui)| 6= 0, (2.2)

for any s ∈ S and for all i = 1, . . . , n. That is, for any s ∈ S the equality Pi(s+ γ) = 0 implies
that Qi(s+ γ + ui) 6= 0 and Qi(s+ γ + ui) = 0 implies Pi(s+ γ) 6= 0.

The system of difference equations (2.1) is in general not solvable without further restrictions
on Pi, Qi. Let Ri(s) denote the rational function Pi(s)/Qi(s + ui), i = 1, . . . , n. Increasing the
argument s in the ith equation of (2.1) by uj and multiplying the obtained equality by the jth
equation of (2.1), we arrive at the relation ϕ(s+ ui + uj)/ϕ(s) = Ri(s+ uj)Rj(s). Analogously,
increasing the argument in the jth equation of (2.1) by ui and multiplying the result by the ith
equation of (2.1), we arrive at the equality ϕ(s + ui + uj)/ϕ(s) = Rj(s + ui)Ri(s). Thus the
conditions

Ri(s+ uj)Rj(s) = Rj(s+ ui)Ri(s), i, j = 1, . . . , n (2.3)

are in general necessary for (2.1) to be solvable. The conditions (2.3) will be referred to as
the compatibility conditions for the system (2.1). Throughout this paper we assume that the
polynomials Pi, Qi defining the generalized Horn system (1.1) satisfy (2.3).

Let U denote the matrix whose rows are the vectors u1, . . . , un. A set S ⊂ Zn is said to
be U-connected if any two points in S can be connected by a polygonal line with the vectors
u1, . . . , un as sides and vertices in S. Let ϕ(s) be a solution to (2.1). We define the support
of ϕ(s) to be the subset of the lattice Zn where ϕ(s) is different from zero. A formal series
xγ
∑

s∈Z
n ϕ(s)xs is called a formal solution to the system (1.1) if the function ϕ(s) satisfies

the equations (2.1) at each point of the lattice Zn. The following Theorem gives necessary and
sufficient conditions for a solution to the system (2.1) supported in some set S ⊂ Zn to exist.

Theorem 2.1 For S ⊂ Zn define

S
′

i = {s ∈ S : s+ ui /∈ S}, S ′′

i = {s /∈ S : s+ ui ∈ S}, i = 1, . . . , n.

Suppose that the conditions (2.2) are satisfied on S. Then there exists a solution to the system
(2.1) supported in S if and only if the following conditions are fulfilled:

Pi(s+ γ)|S′

i
= 0, Qi(s+ γ + ui)|S′′

i
= 0, i = 1, . . . , n, (2.4)

Pi(s+ γ)|S\S′

i
6= 0, Qi(s+ γ + ui)|S 6= 0, i = 1, . . . , n. (2.5)

The proof of this theorem is analogous to the proof of Theorem 1.3 in [16]. Theorem 2.1
will be used in section 4 for constructing an explicit basis in the space of holomorphic solutions
to the generalized Horn system in the case when degQi > degPi and Qi(s + uj) = Qi(s),
i, j = 1, . . . , n, i 6= j. In the next section we compute the dimension of the space of holomorphic
solutions to (1.1) at a generic point.
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3 Holomorphic solutions to sparse systems

Let Gi denote the differential operator xuiPi(θ)−Qi(θ), i = 1, . . . , n. Let D be the Weyl algebra
in n variables [3], and define M = D/

∑n
i=1 DGi to be the left D-module associated with the

system (1.1). Let R = C[z1, . . . , zn] and R[x] = R[x1, . . . , xn] = C[x1, . . . , xn, z1, . . . , zn]. We
make R[x] into a left D-module by defining the action of ∂j on R[x] by

∂j =
∂

∂xj
+ zj. (3.1)

Let Φ : D → R[x] be the D-linear map defined by

Φ(xa1
1 . . . xan

n ∂b1
1 . . . ∂bn

n ) = xa1
1 . . . xan

n z
b1
1 . . . zbn

n . (3.2)

It is easily checked that Φ is an isomorphism of D-modules. In this section we establish some
properties of linear operators acting on R[x]. We aim to construct a commutative family of D-
linear operators Wi : R[x] → R[x], i = 1, . . . , n which satisfy the equality Φ(Gi) = Wi(1). The
crucial point which requires additional assumptions on the parameters of the system (1.1) is the
commutativity of the family {Wi}n

i=1 which is needed for computing the dimension (as a C-vector
space) of the module R[x]/

∑n
i=1WiR[x] at a fixed point x(0). We construct the operators Wi

and show that they commute with one another under some additional assumptions on the
polynomials Qi(s) (Lemma 3.1). However, no additional assumptions on the polynomials Pi(s)
are needed as long as the compatibility conditions (2.3) are fulfilled.

Following the spirit of Adolphson [1] we define operators Di : R[x] → R[x] by setting

Di = zi
∂

∂zi
+ xizi, i = 1, . . . , n. (3.3)

It was pointed out in [1] that the operators (3.3) form a commutative family of D-linear
operators. Let D denote the vector (D1, . . . , Dn). For any i = 1, . . . , n we define operator
∇i : R[x] → R[x] by ∇i = z−1

i Di. This operator commutes with the operators ∂j since both Di

and the multiplication by z−1
i commute with ∂j . Moreover, the operator ∇i commutes with ∇j

for all 1 ≤ i, j ≤ n and with Dj for i 6= j. In the case i = j we have ∇iDi = ∇i +Di∇i.
Thanks to Lemma 2.2 in [16] we may define operators Wi = Pi(D)∇ui − Qi(D) such that

for any i = 1, . . . , n Wi is a D-linear operator satisfying the identity Φ(Gi) = Wi(1). It
follows by the D-linearity of Wi that

∑n
i=1WiR[x] and R[x]/

∑n
i=1WiR[x] can be considered

as left D-modules. Using Theorem 4.4 and Lemma 4.12 in [1], we conclude that the following
isomorphism holds true:

M ≃ R[x]

/(
n∑

j=1

WjR[x]

)
. (3.4)

In the general case the operators Wi = Pi(D)∇ui −Qi(D) do not commute since Di does not
commute with ∇i. However, this family of operators may be shown to be commutative under
some assumptions on the polynomials Qi(s) in the case when the polynomials Pi(s), Qi(s)
satisfy the compatibility conditions (2.3). The following Lemma holds.

Lemma 3.1 The operators Wi = Pi(D)∇ui −Qi(D) commute with one another if and only if
the polynomials Pi(s), Qi(s) satisfy the compatibility conditions (2.3) and for any i, j = 1, . . . , n,
i 6= j, Qi(s+ uj) = Qi(s).
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Proof Since ∇i = z−1
i + Diz

−1
i it follows that ∇iDi = ∇i + Di∇i and that ∇i commutes

with Dj for i 6= j. Hence for any α = (α1, . . . , αn) ∈ Nn
0

∇iD
α1
1 . . .Dαn

n = Dα1
1 . . . (Di + 1)αi . . .Dαn

n ∇i. (3.5)

Let Et
i denote the operator which increases the ith argument by t, that is, Et

if(x) = f(x+ tei).
Here {ei}n

i=1 denotes the standard basis of Zn. It follows from (3.5) that

∇iPj(D) = (E1
i Pj)(D)∇i. (3.6)

For α ∈ Zn let Eα denote the composition Eα1
1 ◦ . . . ◦ Eαn

n . Using (3.6) we compute the
commutator of the operators Wi,Wj :

WiWj −WjWi =
(
Pi(D)(EuiPj)(D) − Pj(D)(EujPi)(D)

)
∇ui+uj+

(
(EujQi)(D) −Qi(D)

)
Pj(D)∇uj +

(
Qj(D) − (EuiQj)(D)

)
Pi(D)∇ui. (3.7)

Let us define the grade g(xαzβ) of an element xαzβ of the ring R[x] to be α − β. Notice that
g(Di(x

αzβ)) = α − β and that g(∇i(x
αzβ)) = α − β + ei, for any α, β ∈ Nn

0 . The result of the
action of the operator in the right-hand side of (3.7) on xαzβ consists of three terms whose
grades are α− β + ui + uj , α− β + uj and α− β + ui. Thus the operators Wi,Wj commute if
and only if

Qi(D) = (EujQi)(D), i, j = 1, . . . , n, i 6= j, (3.8)

and
Pi(D)(EuiPj)(D) = Pj(D)(EujPi)(D), i, j = 1, . . . , n. (3.9)

It follows from (3.8) that the condition Qi(s+uj) = Qi(s), i, j = 1, . . . , n, i 6= j is necessary for
the family {Wi}n

i=1 to be commutative. Under this assumption on the polynomials Qi(s) the
compatibility conditions (2.3) can be written in the form

Pi(s+ uj)Pj(s) = Pj(s+ ui)Pi(s), i, j = 1, . . . , n

and they are therefore equivalent to (3.9). The proof is complete.

For x(0) ∈ Cn let Ôx(0) be the D-module of formal power series centered at x(0). Let Cx(0)

denote the set of complex numbers C considered as a C[x1, . . . , xn]-module via the isomorphism
C ≃ C[x1, . . . , xn]/(x1 − x

(0)
1 , . . . , xn − x

(0)
n ). We use the following isomorphism (see Proposition

2.5.26 in [4] or [1], § 4) between the space of formal solutions to M at x(0) and the dual space
of Cx(0) ⊗C[x] M

HomD(M, Ôx(0)) ≃ HomC(Cx(0) ⊗C[x] M,C). (3.10)

This isomorphism holds for any finitely generated D-module. Using (3.4) and fixing the point x =
x(0) we arrive at the isomorphism

Cx(0) ⊗C[x]

(
R[x]

/
n∑

i=1

WiR[x]

)
≃ R

/
n∑

i=1

Wi,x(0)R, (3.11)
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where Wi,x(0) are obtained from the operators Wi by setting x = x(0). Combining (3.10)
with (3.11) we see that

HomD(M, Ôx(0)) ≃ HomC

(
R

/
n∑

i=1

Wi,x(0)R, C

)
.

Thus the following Lemma holds true.

Lemma 3.2 The number of linearly independent formal power series solutions to the system
(1.1) at the point x = x(0) is equal to dimCR

/∑n
i=1Wi,x(0)R.

For any differential operator P ∈ D, P =
∑

|α|≤m cα(x)
(

∂
∂x

)α
its principal symbol σ(P )(x, z)

∈ R[x] is defined by σ(P )(x, z) =
∑

|α|=m cα(x)zα. Let Hi(x, z) = σ(Gi)(x, z) be the principal
symbols of the differential operators which define the generalized Horn system (1.1). Let J ⊂
D be the left ideal generated by G1, . . . , Gn. By the definition (see [3], Chapter 5, § 2) the
characteristic variety char(M) of the generalized Horn system is given by

char(M) = {(x, z) ∈ C
2n : σ(P )(x, z) = 0, for all P ∈ J}.

Let us define the set UM ⊂ Cn by UM = {x ∈ Cn : ∃ z 6= 0 such that (x, z) ∈ Char(M)}.
Theorem 7.1 in [3, Chapter 5] yields that for x(0) /∈ UM

HomD(M, Ôx(0)) ≃ HomD(M,Ox(0)).

It follows from [18] (pages 146,148) that the C-dimension of the factor of the ring R with respect
to the ideal generated by the regular sequence of homogeneous polynomials
H1(x

(0), z), . . . , Hn(x(0), z) is equal to the product
∏n

i=1 degHi(x
(0), z). Since a sequence of n

homogeneous polynomials in n variables is regular if and only if their common zero is the origin,
it follows that UM = ∅ in our setting. Using Lemmas 3.1,3.2, and Lemma 2.7 in [16], we arrive
at the following Theorem.

Theorem 3.3 Suppose that the polynomials Pi(s), Qi(s) satisfy the compatibility conditions
(2.3) and that Qi(s + uj) = Qi(s) for any i, j = 1, . . . , n, i 6= j. If the principal symbols
H1(x

(0), z), . . . , Hn(x(0), z) of the differential operators G1, . . . , Gn form a regular sequence at x(0)

then the dimension of the space of holomorphic solutions to (1.1) at the point x(0) is equal to∏n
i=1 degHi(x

(0), z).

Using Lemma 2.7 in [16], we obtain the following result.

Corollary 3.4 Suppose that the principal symbols H1(x
(0), z), . . . , Hn(x

(0), z) of the differential
operators G1, . . . , Gn form a regular sequence at x(0). Then the dimension of the space of
holomorphic solutions to (1.1) at the point x(0) is less than or equal to

∏n
i=1 degHi(x

(0), z).

In the next section we, using Theorem 3.3, construct an explicit basis in the space of
holomorphic solutions to the generalized Horn system under the assumption that Pi, Qi can
be represented as products of linear factors and that degQi > degPi, i = 1, . . . , n.
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4 Explicit basis in the solution space of a sparse hypergeometric system

Throughout this section we assume that the polynomials Pi(s), Qi(s) defining the generalized
Horn system (1.1) can be factorized up to polynomials of degree one. Suppose that Pi(s), Qi(s)
satisfy the following conditions: Qi(s+ uj) = Qi(s) and degQi > degPi for any i, j = 1, . . . , n,
i 6= j. In this section we will show how to construct an explicit basis in the solution space of
such a system of partial differential equations under some additional assumptions which are
always satisfied if the parameters of the system under study are sufficiently general.

Recall that U denotes the matrix whose rows are u1, . . . , un and let UT denote the transpose
of U. Let Λ = (UT )

−1
, let (Λs)i denote the ith component of the vector Λs and di = degQi.

Under the above conditions the polynomials Qi(s) can be represented in the form

Qi(s) =

di∏

j=1

((Λs)i − αij), i = 1, . . . , n, αij ∈ C.

By the Ore–Sato theorem [17] (see also § 1.2 of [10]) the general solution to the system of
difference equations (2.1) associated with (1.1) can be written in the form

ϕ(s) = ts1
1 . . . tsn

n

∏p
i=1 Γ(〈Ai, s〉 − ci)∏n

i=1

∏di

j=1 Γ((Λs)i − αij + 1)
φ(s), (4.1)

where p ∈ N0, ti, ci ∈ C, Ai ∈ Zn and φ(s) is an arbitrary function satisfying the periodicity
conditions φ(s+ui) ≡ φ(s), i = 1, . . . , n. (Given polynomials Pi, Qi satisfying the compatibility
conditions (2.3), the parameters p, ti, ci, Ai of the solution ϕ(s) can be computed explicitly. For
a concrete construction of the function ϕ(s) see [16]. The following Theorem holds true.

Theorem 4.1 Suppose that the following conditions are fulfilled.
1. For any i, j = 1, . . . , n, i 6= j it holds Qi(s+ uj) = Qi(s) and degQi > degPi.
2. The difference αij − αik is never equal to a real integer number, for any i = 1, . . . , n and
j 6= k.
3. For any multi-index I = (i1, . . . , in) with ik ∈ {1, . . . , dk} the product

∏p
i=1(〈Ai, s〉−ci) never

vanishes on the shifted lattice Zn + γI , where γI = (α1i1 , . . . , αnin).
Then the family consisting of

∏n
i=1 di functions

yI(x) = xγI

∑

s∈Z
n
∩KU

ts+γI

∏p
i=1 Γ(〈Ai, s+ γI〉 − ci)∏n

k=1

∏dk

j=1 Γ((Λs)k + αkik − αkj + 1)
xs (4.2)

is a basis in the space of holomorphic solutions to the system (1.1) at any point x ∈ (C∗)n =
(C \ {0})n. Here KU is the cone spanned by the vectors u1, . . . , un.

Proof It follows from Theorem 2.1 and the assumptions 2,3 of Theorem 4.1 that the series (4.2)
formally satisfies the generalized Horn system (1.1). Let χk denote the kth row of Λ. Since
degQi(s) > deg Pi(s), i = 1, . . . , n it follows by the construction of the function (4.1) (see [16])
that all the components of the vector △ =

∑p
i=1Ai −

∑n
i=1 diχi are negative. Thus for any

multi-index I the intersection of the half-space Re〈△, s〉 ≥ 0 with the shifted octant KU +γI is
a bounded set. Using the Stirling formula we conclude that the series (4.2) converges everywhere
in (C∗)n for any multi-index I.
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The series (4.2) corresponding to different multi-indices I, J are linearly independent since by
the second assumption of Theorem 4.1 their initial monomials xγI , xγJ are different. Finally, the
conditions of Theorem 3.3 are satisfied in our setting since the first assumption of Theorem 4.1
yields that the sequence of principal symbols H1(x

(0), z), . . . , Hn(x
(0), z) ∈ R of hypergeometric

differential operators defining the generalized Horn system is regular for x(0) ∈ (C∗)n. Hence
by Theorem 3.3 the number of linearly independent holomorphic solutions to the system under
study at a generic point equals

∏n
i=1 di. In this case UM = {x(0) ∈ Cn : x

(0)
1 . . . x

(0)
n = 0}.

Thus the series (4.2) span the space of holomorphic solutions to the system (1.1) at any point
x(0) ∈ (C∗)n. The proof is complete.

In the theory developed by Gelfand, Kapranov and Zelevinsky the conditions 2 and 3 of
Theorem 4.1 correspond to the so-called nonresonant case (see [9], § 8.1). Thus the result on
the structure of solutions to the generalized Horn system can be formulated as follows.

Corollary 4.2 Let x(0) ∈ (C∗)n and suppose that Qi(s + uj) = Qi(s) and degQi > deg Pi for
any i, j = 1, . . . , n, i 6= j. If the parameters of the system (1.1) are nonresonant then there
exists a basis in the space of holomorphic solutions to (1.1) near x(0) whose elements are given
by series of the form (1.2).

5 Examples

In this section we use the results on the structure of solutions to the generalized Horn system for
computing the number of Laurent expansions of some rational functions. This problem is closely
related to the notion of the amoeba of a Laurent polynomial, which was introduced by Gelfand
et al. in [12] (see Chapter 6, § 1). Given a Laurent polynomial f, its amoeba Af is defined to
be the image of the hypersurface f−1(0) under the map (x1, . . . , xn) 7→ (log |x1|, . . . , log |xn|).
This name is motivated by the typical shape of Af with tentacle-like asymptotes going off to
infinity. The connected components of the complement of the amoeba are convex and each such
component corresponds to a specific Laurent series development with the center at the origin
of the rational function 1/f (see [12], Chapter 6, Corollary 1.6). The problem of finding all
such Laurent series expansions of a given Laurent polynomial was posed in [12] (Chapter 6,
Remark 1.10).

Let f(x1, . . . , xn) =
∑

α∈S aαx
α be a Laurent polynomial. Here S is a finite subset of

the integer lattice Zn and each coefficient aα is a non-zero complex number. The Newton
polytope Nf of the polynomial f is defined to be the convex hull in Rn of the index set S.
The following result was obtained in [8].

Theorem 5.1 Let f be a Laurent polynomial. The number of Laurent series expansions with
the center at the origin of the rational function 1/f is at least equal to the number of vertices
of the Newton polytope Nf and at most equal to the number of integer points in Nf .

In the view of Corollary 1.6 in Chapter 6 of [12], Theorem 5.1 states that the number of
connected components of the complement of the amoeba Af is bounded from below by the
number of vertices of Nf and from above by the number of integer points in Nf . The lower
bound has already been obtained in [12]. In this section we describe a class of rational functions
for which the number of Laurent expansions attains the lower bound given by Theorem 5.1. Our
main tool is Theorem 2.1 which allows one to describe supports of the Laurent series expansions
of a rational function which can be treated as a solution to a generalized Horn system. In the
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following three examples we let u1, . . . , un ∈ Z
n be linearly independent vectors, p ∈ N and

let a1, . . . , an ∈ C∗ be nonzero complex numbers. We denote by U the matrix with the rows
u1, . . . , un and use the notation (λij) = Λ = (UT )

−1 and νi = λ1i + · · · + λni. The conclusions
in all of the following examples can be deduced from Theorem 7 in [14].

Example 5.2 The function y1(x) = (1 − a1x
u1 − · · · − anx

un)−1 satisfies the following system
of the Horn type




a1x

u1

· · ·
anx

un



 (ν1θ1 + · · ·+ νnθn + 1) y(x) = Λ




θ1
. . .
θn



 y(x). (5.1)

Indeed, after the change of variables xi(ξ1, . . . , ξn) = ξλ1i

1 . . . ξλni
n (whose inverse is ξi = xui) the

system (5.1) takes the form

aiξi (θξ1 + · · ·+ θξn
+ 1) y(ξ) = θξi

y(ξ), i = 1, . . . , n. (5.2)

The function (1 − a1ξ1 − · · · − anξn)
−1 satisfies (5.2) and therefore the function y1(x) is a

solution of (5.1). The hypergeometric system (5.1) is a special instance of systems (5.3) and (5.5).
We treat this simple case first in order to make the main idea more transparent.

By Theorem 3.3 the space of holomorphic solutions to (5.1) has dimension one at a generic
point and hence y1(x) is the only solution to this system. Thus the supports of the Laurent
series expansions of y1(x) can be found by means of Theorem 2.1. There exist n+1 subsets of the
lattice Zn which satisfy the conditions in Theorem 2.1 and can give rise to a Laurent expansion
of y1(x) with nonempty domain of convergence. These subsets are S0 = {s ∈ Zn : (Λs)i ≥
0, i = 1, . . . , n} and Sj = {s ∈ Zn : ν1s1 + · · · + νnsn + 1 ≤ 0, (Λs)i ≥ 0, i 6= j}, j = 1, . . . , n.
Besides S0, . . . , Sn there can exist other subsets of Z

n satisfying the conditions in Theorem 2.1.
(Such subsets “penetrate” some of the hyperplanes (Λs)i = 0, ν1s1 + · · ·+ νnsn + 1 = 0 without
intersecting them; subsets of this type can only appear if | detU | ≥ 1). However, none of these
additional subsets gives rise to a convergent Laurent series and therefore does not define an
expansion of y1(x). Indeed, in any series with the support in a “penetrating” subset at least
one index of summation necessarily runs from −∞ to ∞. Letting all the variables, except for
that one which corresponds to this index, be equal to zero, we obtain a hypergeometric series
in one variable. The classical result on convergence of one-dimensional hypergeometric series
(see [10], § 1) shows that this series is necessarily divergent. Thus the number of Laurent series
developments of y1(x) cannot exceed n + 1. The Newton polytope of the polynomial 1/y1(x)
has n+ 1 vertices since the vectors u1, . . . , un are linearly independent. Using Theorem 5.1 we
conclude that the number of Laurent series expansions of y1(x) equals n + 1. Thus the lower
bound for the number of connected components of the amoeba complement is attained.

Example 5.3 Recall that θ denotes the vector
(
x1

∂
∂x1
, . . . , xn

∂
∂xn

)
and let (Λθ)i denote the

ith component of the vector Λθ. Let G be the differential operator defined by

G = (Λθ)1 + · · ·+ (Λθ)n−1 + p(Λθ)n + p.

The function y2(x) = ((1 − a1x
u1 − · · · − an−1x

un−1)p − anx
un)

−1 is a solution to the following
system of differential equations of hypergeometric type





aix
uiGy(x) = (Λθ)iy(x), i = 1, . . . , n− 1,

anx
un

(
p−1∏
j=0

(G + j)

)
y(x) =

(
p−1∏
j=0

(p(Λθ)n + j)

)
y(x).

(5.3)
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Indeed, the same monomial change of variables as in Example 5.2 reduces (5.3) to the system




aiξi G̃y(x) = θξi
y(x), i = 1, . . . , n− 1,

anξn

(
p−1∏
j=0

(G̃ + j)

)
y(x) =

(
p−1∏
j=0

(p θξn
+ j)

)
y(x),

(5.4)

where G̃ = θξ1 + · · ·+ θξn−1 + pθξn
+ p. The system (5.4) is satisfied by the function

((1 − a1ξ1 − · · · − an−1ξn−1)
p − anξn)

−1. This shows that y2(x) is indeed a solution to (5.3).
Thus the support of a Laurent expansion of y2(x) must satisfy the conditions in Theorem 2.1.
Notice that unlike (5.1), the system (5.3) can have solutions supported in subsets of the shifted
lattice Zn+γ for some γ ∈ (0, 1)n. Yet, such subsets are not of interest for us since we are looking
for Laurent series developments of y2(x). The subsets S0 = {s ∈ Zn : (Λs)i ≥ 0, i = 1, . . . , n}
and Sj = {s ∈ Z

n : (Λs)1 + · · · + (Λs)n−1 + p(Λs)n + p ≤ 0, (Λs)i ≥ 0, i 6= j}, j = 1, . . . , n
satisfy the conditions in Theorem 2.1. The same arguments as in Example 5.2 show that no
other subsets of Zn satisfying the conditions in Theorem 2.1 can give rise to a convergent
Laurent series which represents y2(x). This yields that the number of expansions of y2(x) is at
most equal to n + 1. The Newton polytope of the polynomial 1/y2(x) has n + 1 vertices since
the vectors u1, . . . , un are assumed to be linearly independent. Using Theorem 5.1 we conclude
that the number of Laurent series developments of y2(x) equals n+ 1.

Example 5.4 Let H be the differential operator defined by H = p(Λθ)2 + · · · + p(Λθ)n + p.
Using the same change of variables as in Example 5.2, one checks that
y3(x) = ((1 − a1x

u1)p − a2x
u2 − · · · − anx

un)
−1 solves the system






a1x
u1 ((Λθ)1 + H) y(x) = (Λθ)1 y(x),

aix
ui 1

p
H

(
p−1∏
j=0

((Λθ)1 + H + j)

)
y(x) =

(Λθ)i

(
p−1∏
j=0

(H − p+ j)

)
y(x), i = 2, . . . , n.

(5.5)

Analogously to Example 5.2, we apply Theorem 2.1 to the system (5.5) and conclude that the
number of Laurent expansions of y3(x) at most equals n+ 1. Thus it follows from Theorem 5.1
that the number of such expansions equals n+ 1.

Example 5.5 The Szegö kernel of the domain {z ∈ C2 : |z1| + |z2| < 1} is given by the
hypergeometric series

h(x1, x2) =
∑

s1,s2≥0

Γ(2s1 + 2s2 + 2)

Γ(2s1 + 1)Γ(2s2 + 1)
xs1

1 x
s2
2 =

(1 − x1 − x2)(1 + 2x1x2 − x2
1 − x2

2) + 8x1x2

((1 − x1 − x2)
2 − 4x1x2)

2 . (5.6)

(See [2], Chapter 3, § 14.) This series satisfies the system of equations

xi (2θ1 + 2θ2 + 3) (2θ1 + 2θ2 + 2) y(x) = 2θi(2θi − 1)y(x), i = 1, 2.
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There exist three subsets of the lattice Z
n which satisfy the conditions in Theorem 2.1, namely

{s ∈ Z2 : s1 ≥ 0, s2 ≥ 0}, {s ∈ Z2 : s1 ≥ 0, s1 + s2 + 1 ≤ 0}, {s ∈ Z2 : s2 ≥ 0, s1 + s2 + 1 ≤ 0}.
Using Theorem 2.1 we conclude that the number of Laurent expansions centered at the origin
of the Szegö kernel (5.6) at most equals 3. The Newton polytope of the denominator of the
rational function (5.6) is the simplex with the vertices (0, 0), (4, 0), (0, 4). By Theorem 5.1 the
number of Laurent series developments of the Szegö kernel at least equals 3. Thus the number
of Laurent expansions of (5.6) (or, equivalently, the number of connected components in the
complement of the amoeba of its denominator) attains its lower bound.

Example 5.6 Let u1 = (1, 0), u2 = (1, 1) and consider the system of equations




xu1y(x) =

(
x1

∂
∂x1

− x2
∂

∂x2

)
y(x),

xu2y(x) =
(
x2

∂
∂x2

)
y(x).

(5.7)

The principal symbols H1(x, z), H2(x, z) ∈ R[x] of the differential operators defining the system
(5.7) are given by H1(x, z) = −x1z1 +x2z2, H2(x, z) = −x2z2. By Theorem 3.3 the dimension of
the solution space of (5.7) at a generic point is equal to 1 since dimCR

/
(H1(x, z), H2(x, z)) = 1

for x1x2 6= 0. For computing the solution to (5.7) explicitly we choose γ = 0 and consider the
corresponding system of difference equations

{
ϕ(s+ u1)(s1 − s2 + 1) = ϕ(s),
ϕ(s+ u2)(s2 + 1) = ϕ(s).

(5.8)

The general solution to (5.8) is given by ϕ(s) = (Γ(s1 − s2 + 1)Γ(s2 + 1))−1φ(s), where φ(s) is
an arbitrary function which is periodic with respect to the vectors u1, u2.

There exists only one subset of Z2 satisfying the conditions of Theorem 2.1, namely S =
{(s1, s2) ∈ Z2 : s1 − s2 ≥ 0, s2 ≥ 0}. Choosing φ(s) ≡ 1 and using (4.2), we obtain the solution
to (5.7):

y(x) =
∑

s1 − s2 ≥ 0,
s2 ≥ 0

xs1
1 x

s2
2

Γ(s1 − s2 + 1)Γ(s2 + 1)
= exp(x1x2 + x1). (5.9)

It is straightforward to check that the solution space of (5.7) is indeed spanned by (5.9).
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Introduction

The notion of Saito free divisors was introduced by K. Saito (cf. [10]). He also formulated and
stressed the importance of systems of uniformization equations along such divisors (cf. [9]).
In this note, I explain recent progress on systems of uniformization equations along Saito free
divisors defined as the zero sets of the discriminants of complex reflection groups of rank three.
The hypersurface defined by the discriminant of a real reflection group is a typical example
of Saito free divisors. It is known that the discriminant of a complex reflection group of rank
three is also a Saito free divisor (cf. [8], [5]). But I don’t know whether it is true for the case of
arbitrary complex reflection groups. My interests on this subject are to construct (1) Saito free
divisors, (2) systems of uniformization equations, and (3) their solutions in a concrete manner.
Restricting to the case of three dimensional affine space, I obtained some results on (1), (2).
But it is difficult to attack (3) compared with (1), (2). The purpose of this note is to report my
results on (1), (2) for the discriminants of irreducible complex reflection groups of rank three.
A part of the results of the last three sections are obtained by a joint research with M. Kato
(Univ. Ryukyus).

1 Definition of Saito free divisors

Let F (x) = F (x1, x2, . . . , xn) be a reduced polynomial. Then D = {x ∈ C
n; F (x) = 0} is a

(weighted homogeneous) Saito free divisor if (C1)+(C2) hold.
(C1) There is a vector field

E =

n∑

i=1

mixi∂xi

such that EF = dF , where m1, m2, . . . , mn, d are positive integers with 0 < m1 ≤ m2 ≤ · · · ≤
mn.

(C2) There are vector fields

V i =

n∑

j=1

aij(x)∂xj
(i = 1, 2, . . . , n)
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such that
(i) each aij(x) is a polynomial of x1, x2, . . . , xn,
(ii) det(aij(x)) = cF (x) for a non-zero constant c,
(iii) V 1 = E, V iF (x) = ci(x)F (x) for polynomials ci(x),
(iv) [E, V i] = kiV

i for some constants ki,
(v) V i (j = 1, 2, . . . , n) form a Lie algebra over R = C[x1, x2, . . . , xn]

We now give examples of Saito free divisors.
Let

f(t) = tn + x2t
n−2 + x3t

n−3 + · · ·+ xn−1t+ xn

be a polynomial of nth degree and let ∆(x2, x3, . . . , xn) be the discriminant of f(t). Then ∆ = 0
is a Saito free divisor in C

n−1.
More generally, the zero locus of the discriminant of an irreducible real reflection group is

a Saito free divisor.
Basic reference of this section is [10].

2 Irreducible complex reflection groups of rank three.

In this section, we collect some results on irreducible complex reflection groups of rank three.
A basic reference on complex reflection groups is Shephard-Todd [16] (see also [8]).

Reflection groups treated in this section are real reflection groups of types A3, B3, H3 and
complex reflection groups of No.24,No.25,No.26,No.27 in the sense of [16]. The real reflection
group of type H3 is same as the group No. 23 in [16].

Let G be one of the seven groups and let P1, P2, P3 algebraically independent basic G-
invariant polynomials and put kj = degξ(Pj). We may assume that k1 ≤ k2 ≤ k3. Let r be the
greatest common divisor of k1, k2, k3 and put k′j = kj/r (j = 1, 2, 3). For the later convenience,
we write x1, x2, x3 for P1, P2, P3. Let δG(x1, x2, x3) be the discriminant of G expressed as a
polynomial of x1, x2, x3.

In the cases A3, B3, H3, taking G-invariants x1, x2, x3 suitably, FW (A3)(x1, x2, x3),
FW (B3)(x1, x2, x3), FW (H3)(x1, x2, x3) are discriminants forG up to a constant factor, respectively,
where FA,1, FB,1, FH,1 are the polynomials given in Theorem of [13].

group order k1, k2, k3 degree (k′1, k
′
2, k

′
3)

A3 W (A3) 24 2, 3, 4 12 (2, 3, 4)
B3 W (B3) 48 2, 4, 6 18 (1, 2, 3)
H3 W (H3) 120 2, 6, 10 30 (1, 3, 5)
No.24 G336 336 4, 6, 14 42 (2, 3, 7)
No.25 G648 648 6, 9, 12 36 (2, 3, 4)
No.26 G1296 1296 6, 12, 18 54 (1, 2, 3)
No.27 G2160 2160 6, 12, 30 90 (1, 2, 5)

The concrete forms of discriminants of W (A3), W (B3), W (H3) are as follows:
Type A3: 16x4

1x3 − 4x3
1x

2
2 − 128x2

1x
2
3 + 144x1x

2
2x3 − 27x4

2 + 256x3
3.

Type B3: x3(x
2
1x

2
2 − 4x3

2 − 4x3
1x3 + 18x1x2x3 − 27x2

3).
Type H3: −50x3

3 + (4x5
1 − 50x2

1x2)x
2
3 + (4x7

1x2 + 60x4
1x

2
2 + 225x1x

3
2)x3 − 135

2
x5

2

−115x3
1x

4
2 − 10x6

1x
3
2 − 4x9

1x
2
2.
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The discriminants for the groups No.25, No.26 are same as those for W (A3), W (B3)
respectively by taking the basic invariants suitably. On the other hand, those for the groups
No.24, No.27 will be given in §5, §.6.

3 Systems of uniformization equations along Saito free divisors.

Let F (x) = 0 be a Saito free divisor and let V j (j = 1, 2, . . . , n) be basic vector fields logarithmic
along F = 0. Let u = u(x1, x2, . . . , xn) be an unknown function. Assume that V 1u = su for a
constant s( 6= 0) Put ~u = t(u, V 2u, . . . , V nu) and consider the system of differential equations

(UE) V j~u = Aj(x)~u (j = 1, 2, . . . , n)
where Aj(x) (j = 1, 2, . . . , n) are n× n matrices whose entries are polynomials of x.

If (UE) is integrable, it is called a system of uniformization equations with respect to the
Saito free divisor F = 0.

The system (UE) is written by

(UEa)





V 1u = su

V iV ju =
n∑

k=1

hk
ij(x)V

ku (∀i, j)

where hk
ij(x) are polynomials of x. There are n number of fundamental solutions of (UEa). Let

uj(x) (j = 1, 2, . . . , n) be fundamental solutions outside the divisor F = 0. Then

ϕ(x) = (u1(x), u2(x), . . . , un(x))

defines a map of C
n − {F = 0} to C

n. The following two problems are fundamental in the
study on systems of uniformization equations.

PROBLEM 1: Construct fundamental solutions uj(x) (j = 1, 2, . . . , n) of (UEa).
PROBLEM 2: Construct the inverse of ϕ(x) in a concrete manner.

These two problems are solved in the case W (A3) for a special but interesting system of
uniformization equations by K. Saito. For the details of the results, see [9].

4 The discriminant of the Coxeter group W (H3) of type H3.

A part of the argument in the case of W (A3) in [9] is applicable to the case of the Saito free
divisor defined by the zero locus of the discriminant of the Coxeter group of type H3. In this
section, I will explain the results on this case. For the details of results in this section, see [15].

The discriminant of the polynomial P (t) defined by

P (t) = t6 + y1t
5 + y2t

3 + y3t+
1

20
y2

2 −
1

4
y1y3 (4.1)

is ∆2 up to a constant factor, where

∆ = 125y3
1y

4
2 + 864y5

2 − 1250y4
1y

2
2y3 − 9000y1y

3
2y3 + 3125y5

1y
2
3 + 25000y2

1y2y
2
3 + 50000y3

3. (4.2)

Remark 4.1 The equation P (t) = 0 is essentially same as ”Die allgemeine Jacobi’sche
Gleichung sechsten Grades” (see p.223 in Klein’s book [7]).
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The polynomial ∆ is regarded as the discriminant of the groupW (H3). In fact, the substitution
of the variables (y1, y2, y3) with (x1, x2, x3) defined by the relations





y1 = −4x1

y2 = 10x3
1 − 25x2

y3 = −4x5
1 + 50x2

1x2 − 50x3

(4.3)

implies that ∆ coincides with the determinant of the matrix M up to a constant factor, where
M is defined by

M =




x1 3x2 5x3

3x2 2x3 + 2x2
1x2 7x1x

2
2 + 2x4

1x2

5x3 7x1x
2
2 + 2x4

1x2
1
2
(15x3

2 + 4x4
1x3 + 18x3

1x
2
2)


 (4.4)

and detM is the discriminant of W (H3) (cf. [17]). In the sequel, we always regard P (t) as a
polynomial of t and x. The hypersurface defined as the zero set of the polynomial f0 = detM
is an example of Saito free divisors. To show this, we define vector fields V0, V1, V2 by




V0

V1

V2



 = M




∂x1

∂x2

∂x3





Then we have

[V0, V1] = 2V1, [V0, V2] = 4V2,

[V1, V2] = (4x3
1x2 + 2x2

2)V0 + 4x1x2V1

and
V0f0 = 15f0,
V1f0 = 2x2

1f0,
V2f0 = 2x1(2x

3
1 + 5x2)f0

Remark 4.2 We note that

P (−x1) =
125

4
x2

2. (4.5)

This implies that (−x1, 5
√

5/2 · x2) is a point on the hyperelliptic curve s2 = P (t) on (s, t)
plane.

Consider the system of differential equations

Vi




u
V1u
V2u


 = Bi+1




u
V1u
V2u


 (i = 0, 1, 2) (4.6)

The system (4.6) is a system of uniformization equations along the Saito free divisor f0(x) = 0.
Here Bj are defined as follows:
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B1 =




s0 0 0
0 2 + s0 0
0 0 4 + s0





B2 =




0 1 0

− 2
225x1





(8 + 70s1 − 100s2
1 + 8s0

+35s1s0 + 2s2
0)x

3
1

+(−180 + 825s1 − 750s2
1

−90s0 + 75s1s0)x2





1
15(8 + 5s1 + 4s0)x

2
1 s1

1
900





(−128 + 80s1 + 100s2
1 − 128s0

+40s1s0 − 32s2

0
)x6

1

+10(−32− 400s1 + 550s2

1
+ 328s0

−20s1s0 − 8s2
0)x

3
1x2

+(−4500s1 + 5625s2

1
+ 1800s0)x

2

2

+(2400− 3000s1 + 1200s0)x1x3





1
15x1

{
(8 + 5s1 + 4s0)x

3

1

+10(8 + 5s1 + s0)x2

}
1
15 (4 − 5s1 + 2s0)x

2
1




B3 =




0 0 1

1

900





(−128 + 80s1 + 100s2

1 − 128s0

+40s1s0 − 32s2

0
)x6

1

+10(−32− 400s1 + 550s2
1 − 32s0

−20s1s0 − 8s2

0
)x3

1
x2

+s1(−4500 + 5625s1)x
2

2

+100(24− 30s1 + 12s0)x1x3





1

15
x1

{
(8 + 5s1 + 4s0)x

3
1

+10(2 + 5s1 + s0)x2

}
1

15
(4 − 5s1 + 2s0)x

2

1

1

450






(−128 + 80s1 + 100s2

1
− 128s0

+40s1s0 − 32s2

0
)x8

1

+(80 − 500s1 + 500s2

1 − 280s0

+200s1s0 − 160s2

0
)x5

1
x2

+25(−104− 130s1 + 325s2
1 + 40s0

+25s1s0 − 8s2

0
)x2

1
x2

2

+100(12− 15s1 + 24s0)x
3

1
x3

+50(60− 75s1 + 30s0)x2x3






1

4
(4 + 5s1)x2(4x3

1 + 5x2)
x1

15

{
(16 − 5s1 + 8s0)x

3

1

+(40 − 50s1 + 20s0)x2

}




Remark 4.3 In the case s0 = 1
2
, s1 = 1, the monodromy group of the system Vj~u = Bj+1~u (j =

0, 1, 2) coincides with W (H3). This case is treated in Haraoka-Kato [6].

We consider the system Vj~u = Bj+1~u (j = 0, 1, 2) with s0 = −2, s1 = 0. Then we obtain





V0v = −2v
V1V1v = 0
V2V1v = 0
V2V2v = −4x2

1(3x
2
2 + 2x1x3)v + x2(4x

3
1 + 5x2)V1v

(4.7)

Theorem 4.4 (cf. [15]) The function v(x) defined by

v(x) =

∫ −x1

∞

P (t)−1/2dt

is a solution of (4.7).
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The proof of this theorem is given by an argument similar to the case of type A3.
If u(x) is a solution of (4.7) such that V1u = 0, then u is a solution of






V0u = −2u
V1u = 0
{V 2

2 + 4x2
1(3x

2
2 + 2x1x3)}u = 0

(4.8)

Taking two paths C1, C2 appropriately and define

wj(x) =

∫

Cj

ϕ1(t)dt (j = 1, 2)

Then each wj(x) is also a solution of (4.7) and in this manner we can construct solutions of
(4.8). In this case it is not clear whether solutions of (4.8) are expressed by special functions or
not. Moreover PROBLEM 2 (the construction of the inverse mapping) is still open.

5 The discriminant of the group G336, Shephard-Todd notation No.24.

In this case, we begin with defining the polynomial

P (t) = t7 − 7
2
(c1 − 1)x2t

5 − 7
2
(c1 − 1)x3t

4 − 7(c1 + 4)x2
2t

3 − 14(c1 + 2)x2x3t
2

+7
2
{(3c1 − 7)x3

2 − (c1 + 5)x2
3}t+ 1

2
(7c1 − 131)x2

2x3 + x7

(c21 = −7)

The discriminant of P (t) is f 2
0 up to a constant factor, where

f0 = 2048x9
2x3 − 22016x6

2x
3
3 + 60032x3

2x
5
3 − 1728x7

3 + 256x7
2x7 − 1088x4

2x
2
3x7

−1008x2x
4
3x7 + 88x2

2x3x
2
7 − x3

7

and f0 is the discriminant of the complex reflection group G336. (The polynomial f0 is same
as the one shown in p.262 of the paper of A. Adler in the book “The Eightfold Way”by x2 →
f, x3 → ∇, x7 → C. The polynomial P (t) is given in p.406 of GMA of F. Klein, Band II.)

Define vector fields V0, V1, V2 by

t(V0, V1, V2) = M t(∂x2, ∂x3 , ∂x7)

Then V0, V1, V2 form the generators of logarithmic vector fields along f0 = 0. Here

M =




2x2 3x3 7x7

x2
3 − 1

12
x7 −4

3
x2(28x3

2x3 − 128x3
3 + 3x2x7)

7x7 −56x2(2x
3
2 − 13x2

3) 28(32x6
2 − 40x3

2x
2
3 − 84x4

3 + 59x2x3x7)




Put

A0={{s0,0,0},{0,s0+4,0},{0,0,s0+5}};

A1={{0,1,0},{1/162*x2*(4*(-1+c4-s0)*(8+c4+2*s0)*x2^3-

3*(24+43*c4+5*c4^2+24*s0+

19*c4*s0)*x3^2),1/9*(-10+c4-4*s0)*x2^2,c4*x3/504},
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{-7/54*(8*(-152+37*c4+7*c4^2-172*s0-14*c4*s0-38*s0^2)*x2^3*x3-

18*(8*c4+c4^2+76*s0)*x3^3+3*(8+c4+38*s0)*x2*x7),

-14/3*(-20+5*c4-38*s0)*x2*x3,-1/9*(8+c4+2*s0)*x2^2}};

A2={{0,0,1},

{-7/54*(8*(-152+37*c4+7*c4^2-190*s0-14*c4*s0-38*s0^2)*x2^3*x3-18*c4*(8+

c4)*x3^3+3*(8+c4+8*s0)*x2*x7),-14/3*(-152+5*c4-38*s0)*x2*x3,

-1/9*(2+c4+2*s0)*x2^2},

{98/9*(48*(-24+5*c4+c4^2-36*s0-c4*s0)*x2^5+4*(-440+97*c4+19*c4^2-658*s0

-89*c4*s0-722*s0^2)*x2^2*x3^2+3*(8+c4+38*s0)*x3*x7),

-1176*(-2+c4)*(2*x2^3-x3^2),14/3*(190+5*c4+76*s0)*x2*x3}};

There is a system of differential equation of rank three defined by

Vj




u
V1u
V2u


 = Aj




u
V1u
V2u


 (j = 0, 1, 2)

This system has two parameters s0, c4.
Substituting s0 = −1, c4 = 0 in Aj , we obtain A(0)

j ;

A
(0)
0 =




−1 0 0
0 3 0
0 0 4



 , A
(0)
1 =




0 1 0
0 −2

3
x2

2 0
7
3
(8x3

2x3 − 76x3
3 + 5x2x7) −84x2x3 −2

3
x2

2



 ,

A
(0)
2 =




0 0 1
0 532x2x3 0

196(32x5
2 − 112x2

2x
2
3 − 5x3x7) 2352(2x3

2 − x2
3) 532x2x3





The system

Vj




u
V1u
V2u


 = A

(0)
j




u
V1u
V2u


 (j = 0, 1, 2)

has a quotient which is defined by V1u = 0. Assuming V1u = 0, the system for

(
u
V2u

)
turns

out to be





V0

(
u
V2u

)
=

(
−1 0
0 4

)(
u
V2u

)

V1

(
u
V2u

)
=

(
0 0

7
3
(8x3

2x3 − 76x3
3 + 5x2x7) −2

3
x2

2

)(
u
V2u

)

V2

(
u
V2u

)
=

(
0 1

196(32x5
2 − 112x2

2x
2
3 − 5x3x7) 532x2x3

)(
u
V2u

)
(5.1)

We now study the restriction of the system (5.1) to the hyperplane x2 = 0. Then we obtain
an ordinary differential equation

(
∂2

x7
+

18x2
7

7(1728x7
3 + x3

7)
∂x7 +

10x7

49(1728x7
3 + x3

7)

)
u = 0
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One of its solutions is

x
−1/3
3 F

(
1

21
,
10

21
;
2

3
;− x3

7

1728x7
3

)

Similarly as the restriction to x3 = 0 of (5.1), we obtain an ordinary differential equation
(
∂2

x7
− 256x7

2 + 11x2
7

7x7(256x7
2 − x2

7)
∂x7 +

3

49(−256x7
2 + x2

7)

)
u = 0

One of its solutions is

x
−1/2
2 F

(
1

14
,

3

14
;
3

7
;

x2
7

256x7
2

)

Remark 5.1 We note that, in the case c4 = −9, s0 = 1/2, the system of differential equations
has a monodromy group isomorphic to G336. This case is treated in [6].

6 The discriminant of the group G2160, Shephard-Todd notation No.27.

Consider the polynomial

P (t) = t6 + y1t
5 + y2t

4 + y3t
3 + y4t

2 + y5t+ y6.

Substitute yj (j = 1, 2, . . . , 6) by xj (j = 1, 2, . . . , 6);

y1=x1

y2=(5/16)*(9 + sr)*x2,

y3=(5/64)*(11 + 3*sr)*x1*x2,

y4=(5/512)*(37 + 45*sr)*x2^2,

y5=(61 + 5*sr)*(-64*x1^3*x2 + 373*x1*x2^2 + 15*sr*x1*x2^2 + 2*x3))/12288,

y6=(-279 + 145*sr)*(-512*x1^4*x2 + 2864*x1^2*x2^2 +

1425*x2^3 + 135*sr*x2^3 +16*x1*x3)/3538944,

where sr2 = −15. Then f 2
0 the discriminant of the polynomial P (t), where

f0 = 65536x11
1 x

2
2 − 1765376x9

1x
3
2 + 17406016x7

1x
4
2 − 73887360x5

1x
5
2 + 107371008x3

1x
6
2

+34338816x1x
7
2 − 4096x8

1x2x3 + 96640x6
1x

2
2x3 − 707952x4

1x
3
2x3 + 1622592x2

1x
4
2x3

+186624x5
2x3 + 64x5

1x
2
3 − 1584x3

1x2x
2
3 + 7128x1x

2
2x

2
3 + 9x3

3

up to a constant factor.

Remark 6.1 By direct computation, we find that

P

(
(3 − 5sr)

72
x1

)
=

5(−45 + 11sr)

1152

{
x2 −

(39 − sr)

216
x2

1

}3

This means that
(

(3 − 5sr)

72
x1,

(
5(−45 + 11sr)

1152

)1/3{
x2 −

(39 − sr)

216
x2

1

})

is a point on the trielliptic curve s3 = P (t) on (s, t) plane.
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The polynomial f0 is regarded as the discriminant of the complex reflection group No.27.
In particular, f0 is obtained as the determinant of the matrix

M =




x1 2x2 5x3

x2
2

1
432

(144x1x
2
2 − x3)

1
108

(640x6
1x2 − 9388x4

1x
2
2 + 36600x2

1x
3
2

−19872x4
2 − 28x3

1x3 + 307x1x2x3)
x3

1
135

(−1920x4
1x2 + 8724x2

1x
2
2 − 4

135
x1(65920x6

1x2 − 887092x4
1x

2
2 + 2886120x2

1x
3
2

+16416x3
2 + 139x1x3) +367632x4

2 − 2692x3
1x3 + 20533x1x2x3)



.

It can be shown that f0 coincides with the polynomial gk13 in my notation by a weight
preserving coordinate change in the notation of my note. We define vector fields V0, V1, V2

by 


V0

V1

V2


 = M




∂x1

∂x2

∂x3




Then V0, V1, V2 form generators of the logarithmic vector fields along the set f0 = 0 in the
(x1, x2, x3)-space. By direct computation, we have

[V1, V2] =
1

540
(3200x5

1x2 − 16412x3
1x

2
2 − 18056x1x

3
2 − 80x2

1x3 − 307x2x3)V0

− 8

135
(474x4

1 − 4102x2
1x2 + 7209x2

2)V1 −
1

54
x1(6x

2
1 − 73x2)V2

We consider the system of differential equations

Vj




u
V1u
V2u


 = Aj




u
V1u
V2u


 (j = 0, 1, 2)

where A0, A1, A2 are matrices of rank three defined as follows.

A0={{s0,0,0},{0,3+s0,0},{0,0,4+s0}};

A1={{0,1,0},{1/2099520*(320*(1+1728*h1-4*s0)*(3+864*h1+s0)*x1^6-

120*(47+58752*h1-280*s0)*(3+864*h1+s0)*x1^4*x2+36*(2115+

2967840*h1+679311360*h1^2-15870*s0-2515104*h1*s0-

6125*s0^2)*x1^2*x2^2-3888*(15+30240*h1+7464960*h1^2-175*s0+

28512*h1*s0)*x2^3+45*(3+864*h1-35*s0)*x1*x3),-1/810*x1*((55+

42768*h1+40*s0)*x1^2-3*(255+83376*h1+175*s0)*x2),-1/6*h1*(x1^2-

6*x2)},{1/656100*(-25280*(1+1728*h1-4*s0)*(3+864*h1+s0)*x1^7

+120*(9879+16458336*h1+3920596992*h1^2-42907*s0-16232832*h1*s0-

17560*s0^2)*x1^5*x2-36*(123660+210094560*h1+50250378240*h1^2-

721860*s0-210720096*h1*s0-308135*s0^2)*x1^3*x2^2+1944*(345+3546720*h1+

992839680*h1^2-14815*s0+6258816*h1*s0-5775*s0^2)*x1*x2^3-45*(147+

42336*h1-1625*s0)*x1^2*x3-3645*(5+1440*h1+44*s0)*x2*x3),(4*(316*(-15+

25704*h1+10*s0)*x1^4-3*(-16645+15303168*h1+8125*s0)*x1^2*x2-2430*(56+

1440*h1-11*s0)*x2^2))/2025,(x1*(2*(-85+42768*h1-20*s0)*x1^2-3*(-715

+166752*h1-175*s0)*x2))/1620}};

A2={{0,0,1},{1/656100*(-25280*(1+1728*h1-4*s0)*(3+864*h1+s0)*x1^7+120*(9879+



Jiro Sekiguchi. Reflection groups of rank three ... 86

16458336*h1+3920596992*h1^2-75307*s0-16232832*h1*s0-17560*s0^2)*x1^5*x2-

36*(123660+210094560*h1+50250378240*h1^2-1275765*s0-210720096*h1*s0-

308135*s0^2)*x1^3*x2^2+1944*(345+3546720*h1+992839680*h1^2-3530*s0+

6258816*h1*s0-5775*s0^2)*x1*x2^3-45*(147+42336*h1-3785*s0)*x1^2*x3-

6075*(3+864*h1-35*s0)*x2*x3),4*(632*(15+12852*h1+5*s0)*x1^4-3*(24375+

15303168*h1+8125*s0)*x1^2*x2-2430*(-33+1440*h1-11*s0)*x2^2)/2025,x1*(2*

(5+42768*h1-20*s0)*x1^2-3*(15+166752*h1-175*s0)*x2)/1620},{1/820125*(4*

(1997120*(1+1728*h1-4*s0)*(3+864*h1+s0)*x1^8-120*(680901+1246968864*h1+

302650380288*h1^2-3612193*s0-1421635968*h1*s0-1027000*s0^2)*x1^6*x2+

36*(6514065+14746523040*h1+3706696028160*h1^2-67397805*s0-17324851104*h1*

s0-16957205*s0^2)*x1^4*x2^2-972*(-235065+392096160*h1+132420925440*h1^2

-3712385*s0+1286813088*h1*s0-1072500*s0^2)*x1^2*x2^3+1574640*(5+1440*h1

-11*s0)*(-5+8640*h1+33*s0)*x2^4+45*(4503+1296864*h1-144155*s0)*x1^3*x3+

3645*(740+213120*h1+5891*s0)*x1*x2*x3)),-16*(49928*(-25+60048*h1)*x1^5-

192*(-44815+84795282*h1)*x1^3*x2-1620*(4469+1982880*h1)*x1*x2^2

+180225*x3)/10125,-8*(632*(-10+6426*h1-5*s0)*x1^4-3*(-16250+7651584*h1-

8125*s0)*x1^2*x2-2430*(22+720*h1+11*s0)*x2^2)/2025}};

Remark 6.2 A1, A2, A3 contain parameters s0, h1. The determination of A1, A2, A3 was
accomplished by Masayuki Noro (Kobe Univ.).

The case s0 = 1
6
, h1 = − 19

5184

In this case the monodromy group of the system of differential equations becomes G2160.
This case is treated in [6].

The case s0 = −3, h1 = 0
In this case there is a quotient of the system above. In fact,





V1u = 1
162
x1(13x2

1 − 162x2)u

Vj

(
u
V2u

)
= Bj+1

(
u
V2u

)
(j = 0, 1, 2)

is a quotient of the system Vj~u = Aj~u (j = 0, 1, 2) defined above, where Bj (j = 0, 1, 2) are
matrices of rank two defined below:

B0={{-3,0},{0,1}};

B1={{1/162*x1*(13*x1^2-162*x2),0},

{(-98592*x1^7+1926304*x1^5*x2-10970316*x1^3*x2^2+17754552*x1*x2^3

-15066*x1^2*x3+30861*x2*x3)/43740,(-1350*x1^3+15390*x1*x2)/43740}};

B2={{0,1},{-1/164025*(4*(-6490640*x1^8+180214176*x1^6*x2-999084132*x1^4*x2^2+

712058040*x1^2*x2^3+1244595456*x2^4-2995542*x1^3*x3+665577*x1*x2*x3)),

-4*(511920*x1^4-3948750*x1^2*x2+4330260*x2^2)/164025}};
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ГРУППЫ ОТРАЖЕНИЙ РАНГА ТРИ И СИСТЕМЫ
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Аннотация. В работе приведены результаты, описывающие дискриминант неприводимых

комплексных групп отражения ранга три.
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THE MULTIPOLE METHOD FOR CERTAIN ELLIPTIC EQUATION
WITH DISCONTINUOUS COEFFICIENT
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Abstract. A new analytic–numerical method has been developed for solving BVPs in 3D domains

with cones of arbitrary base for certain elliptic equation with piecewise constant coefficient. The

solution is obtained by the use of special basic functions — the Multipoles, which are costructed in an

explicit form. The method supplies high accurate evaluation of the solution, its derivatives, singularity

exponents and intensity factors near the geometrical singularities — edges and the corner vertex.

Keywords: boundary value problem, domains with cones, multipole method, singularity exponents,

intensity factors.

1 Introduction

We consider boundary value problems (BVPs) for certain elliptic equation with piecewise
constant coefficient in domains with cones of arbitrary base (particularly, with polyhedral
corners), when the surface of discontinuity of the coefficient (interface surface) is a conical
one passing through the vertex of the initial cone. An equivalent statement, which is called
a transmission problem, consists in solving the Laplace equation with so called transmission
conditions on the interface surface [1].

Solutions of such BVPs have singularities at vertices of the cones [2]-[8]. Development of
effective methods for solving these BVPs, including high accuracy computation of the singularity
exponents, became a challenging issue [1], [9]-[13].

In this work we present a new effective analytic–numerical method for high–accuracy compu-
tation of these singularities at cones of arbitrary base (in particular, for polyhedral corners),
when conical interface surface also has an arbitrary base. This method represents a generalization
of the Multipole method, previously developed in [14]-[16] for solving a certain class of 2D and
3D elliptic BVPs in domains of complex shape with geometric singularities of different kinds.
For the case of the Laplace equation, the Multipole method in domains with cones has been
developed in [17]-[19].

The principle underlying our method consists in using a system of basic functions that
conform to the structure of the solution near the conical surfaces of the boundary and interface.
We call these functions Multipoles due to their similarity to ordinary multipoles, known in the
theory of potential [20]. Such systems possess good approximation properties. Most important
is the fact that these basic functions can be expressed in explicit analytic form in terms of
special functions.

By virtue of these features the method proves most effective for precise computation of
exponents at the cone singularity.

The work is supported by RFBR (projects 07-01-00295, 07-01-00503) and by Program №3 of Fundamental
Research of the Mathematical Sciences Department of RAS.
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2 Statement of the problem

2.1 Domains K and Ω

Let (r, θ, ϕ) be spherical co-ordinates of a point x in space R3. Denote by

S2 := {r = 1, θ ∈ [0, π], ϕ ∈ [0, 2π)}

the unit sphere and by B3 the unit ball in R3. Points θ = 0 and θ = π on S2 are called the
North Pole PN and South Pole PS, respectively.

Consider two disjoint Lipschitz piecewise smooth contours L and Lin on the sphere S2, each
divides S2 into two domains, one of which contains PS and another PN . The domain containing
PN and bounded by L (by Lin) is denoted by S (by Sin). Assume that Lin ⊂ S and denote
Sex = S \ Sin; observe that ∂Sex = L ∪ Lin.

The domain K ⊂ R3 defined by the formula K := {r ∈ (0,∞), (θ, ϕ) ∈ S} is an (infinite)
cone with base S, its boundary being the conical surface ∂K = {r ∈ (0,∞), (θ, ϕ) ∈ L}.
The domains Kin,Kex and their boundaries ∂Kin, ∂Kex are defined in a similar way, with the
vertex {0} shared by both cones, K = Kin ∪ Kex, conical surface ∂Kin contained in K ∪ {0},
and ∂Kex = ∂K ∪ ∂Kin.

Consider an important instance of cone K when it presents a trihedral corner with its three
faces being plane angles with common vertex {0} and with values of the angles being equal
to πα, where α ∈ (0, 2/3]. Denote by Kα this trihedral corner, by Sα its base, and by Lα the
contour of this base. In this instance, the equation of contour Lα can be written in the form

Lα = {(θ, ϕ) : θ = θ(ϕ), ϕ ∈ [0, 2π)}, θ(ϕ) =





T(ϕ + 2π
3

); ϕ ∈ [0, 2π
3

],

T(ϕ); ϕ ∈ [2π
3
, 4π

3
],

T(ϕ− 2π
3

); ϕ ∈ [4π
3
, 2π],

(2.1)

with function T (ϕ) given by the formula

T (ϕ) = arc cos
[
cosϕ/

√
c+ cos2 ϕ

]
(2.2)

that involves parameter c = (1 − cosπα)
(
2 + 4cosπα

)−1
. It worth to be mentioned that

value πβ of dihedral angle between faces of Kα are related to the quantity πα by the formula
cosπα = cosπβ /(1 − cosπβ).

The transmission BVP is being solved in a domain Ω ⊂ K homeomorphic to B3 with
Lipschitz piecewise smooth boundary ∂Ω. By definition, boundary ∂Ω consists of the two
disjoint parts: ∂Ω = γ ∪ Γ, where γ is a closure of a simply-connected domain on the conical
surface ∂K with its vertex {0} being an interior point of γ, and Γ ⊂ K is a simply-connected
domain on a certain piecewise smooth surface. Note that K is an extension of Ω through Γ.
Assume that ∂Kin divides Ω into two subdomains Ωin and Ωex. Define γin = ∂Kin ∩ Ω and
observe that γin = ∂Ωin ∩ ∂Ωex. Note that γin is the interface surface within domain Ω where
the transmission conditions are to be set.

Let the surface Γ be divided by a Lipschitz piecewise smooth curve or contour into two
domains: D and N; the latter correspond to the boundary conditions (the Dirichlet or Neumann
type) to be set on the corresponding parts of Γ.
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2.2 The formulation of the transmission BVP with mixed Dirichlet — Neumann

boundary conditions

For a function ψ defined on Ω, denote by ψin (by ψex) its restriction to Ωin (to Ωex). Consider
the following transmission BVP for the Laplace equation in the domain Ω:

∆ψin = 0 in Ωin , ∆ψex = 0 in Ωex , (2.3)

with the transmission conditions on the interface surface

ψin

∣∣
γin

= ψex

∣∣
γin
, κin ∂ν ψin

∣∣
γin

= κex ∂ν ψex

∣∣
γin
, (2.4)

where κin and κex are prescribed positive constants, ∂ν being a normal derivative, and with
mixed Dirichlet — Neumann type conditions

ψ
∣∣

γ
= 0 , ψ

∣∣
D

= hD, ∂νψ
∣∣

N
= hN (2.5)

on the boundary ∂Ω = γ ∪ Γ.
We shall use the notation h(x) defined by equalities

h(x) = hD(x), x ∈ D; h(x) = hN(x), x ∈ N, (2.6)

and notation κ defined by the formula

κ = κin, x ∈ Ωin; κ = κex, x ∈ Ωex. (2.7)

Transmission problem (2.3)–(2.5) can be rewritten in a generalized statement [6]-[8], [21]-
[24]. In order to do it, Sobolev spaces are introduced, following [23]-[26].

Denote by
◦

W 1
2 (Ω, γ) a subspace of W 1

2 (Ω) consisting of functions having zero trace on γ.

Similarly, define the space
◦

W 1
2 (Ω, γ ∪ D) as a subspace of W 1

2 (Ω) consisting of functions with
zero trace on γ ∪ D.

Let A be a subdomain of boundary ∂Ω, and let a be a subdomain of A. Denote by
◦

W 1/2
2 (A, a)

a subspace of the Sobolev — Slobodetskii space W 1/2
2 (A) consisting of functions vanishing a.e.

on a. Only the particular cases of the latter spaces
◦

W 1/2
2 (γ ∪D, γ) and

◦

W 1/2
2 (∂Ω, γ ∪D) are to

be employed below. The so called negative space
◦

W−1/2
2 (∂Ω, γ ∪ D) is defined as a conjugate

space to
◦

W 1/2
2 (∂Ω, γ ∪ D).

The boundary data hD and hN in conditions (2.5) are required to belong to the spaces

hD ∈
◦

W 1/2
2 (γ ∪ D, γ), hN ∈

◦

W−1/2
2 (∂Ω, γ ∪ D). (2.8)

A generalized solution of BVP (2.3)–(2.5) is understood to be a function ψ ∈
◦

W 1
2 (Ω, γ)

satisfying boundary condition ψ
∣∣
D

= hD and the integral identity

∫

Ω

κ (∇ψ, ∇η) dx =

∫

N

hN η ds

for all test-functions η ∈
◦

W 1
2(Ω, γ ∪ D), where the notation ( . , . ) stands for the inner product

in Euclidean space R3, and κ is defined by (2.7).
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Solvability of the formulated BVP is guaranteed by the following

Theorem 1. For any hD and hN satisfying (2.8) there exists a unique generalized solution

ψ ∈
◦

W 1
2(Ω, γ) of the problem (2.3)–(2.5).

It is clear that Theorem 1 admits a standard proof which reduces to the Riesz representation
theorem and follows well-known patterns (see e.g. [24]). Outside the boundary’s singularities,
regularity of the generalized solution of (2.3)–(2.5) is covered by the standard theory of elliptic
BVPs [3], [6], [8], [21], [23]. Namely, the generalized solution is infinitely differentiable at any
interior point x ∈ Ω \ γin as well as at any interior point of γ. At γin, the generalized solution
is differentiable one-sidedly, i.e. on either side of γin, as many times as allows the smoothness
of γin. Omitting the details, we just mention that regularity of the generalized solution at
boundary points x ∈ D and x ∈ N depends on the smoothness of boundary surface Γ and
boundary data hD, hN.

3 Construction of the system of basic functions (the Multipoles)

3.1 Reduction to a spectral problem for the Beltrami — Laplace operator with

transmission conditions

Our goal consists in constructing a system of functions Ψk (the Multipoles) that possess good
approximation properties and conform to the structure of the solution near the conical surfaces,
which contain singularities (the vertex and edges). The basic functions are defined on the whole
cone domain K; their restrictions to Kin and Kex are denoted by Ψk,in and Ψk,ex, respectively.
The desired properties of the basic functions require the following conditions to be met:
1) functions Ψk identically satisfy the Laplace equation in K with transmission conditions
(2.4) on ∂Kin; 2) they identically meet the homogeneous Dirichlet condition Ψk = 0 on ∂K;
3) they constitute an orthogonal basis in L2(S).

The Multipoles are represented in the form

Ψk(r, θ, ϕ) = rµ U(µ; θ, ϕ), µ = µ(k) ; k = 1, 2, . . . ; (3.1)

restrictions of U(µ; θ, ϕ) to Sin and to Sex are denoted by Uin and by Uex, respectively.
Thus U(µ(k); θ, ϕ) = Uk are eigenfunctions with eigenvalues µ(k) for the Laplace — Beltrami

operator in domain S on the unit sphere

1

sin θ

∂

∂ θ

(
sin θ

∂U

∂ θ

)
+

1

sin2 θ

∂2U

∂2 ϕ
+ µ (µ + 1)U = 0 in S \ Lin , (3.2)

with the transmission conditions on interface line Lin, induced by (2.4), and with homogeneous
Dirichlet condition on L:

Uin

∣∣
Lin

= Uex

∣∣
Lin
, κin ∂ν Uin

∣∣
Lin

= κex ∂ν Uex

∣∣
Lin

, U
∣∣
L

= 0 . (3.3)

Denote by
◦

W 1
2 (S) a subspace of W 1

2 (S) consisting of functions having zero trace on L. A

generalized solution of BVP (3.2), (3.3) is understood to be a function U ∈
◦

W 1
2 (S) satisfying

the integral identity
∫

S

κ (∇SU, ∇SV ) ds = µ (µ+ 1)

∫

S

U V ds ∀ V ∈
◦

W 1
2(S), (3.4)
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where ∇S stands for a tangential component to S of the gradient ∇. Note that an inner product

[U, V ]S =

∫

S

κ (∇SU, ∇SV ) ds

induces an equivalent norm on
◦

W 1
2(S).

Theorem 2. For a spectral problem (3.4), there exists a denumerable set of genera-

lized solutions U = Uk ∈
◦

W 1
2 (S), µ = µ(k), k = 1, 2, . . .. The eigenvalues µ(k) have no finite

limit points, and µ(k) → ∞ as k → ∞. To each eigenvalue µ(k) there corresponds at most a

finite number of generalized eigenfunctions Uk ∈
◦

W 1
2(S). The eigenfunctions {Uk} form a basis

in L2(S) and W 1
2 (S), which is orthonormal in L2(S) and orthogonal with respect to the inner

product [ . , . ]S.

It is clear that Theorem 2 admits a standard proof following the pattern of [21].

Remark 1. In accordance with Theorem 2, all eigenvalues µ(k), k = 1, 2, . . . can be enumerated
in order of their nondecresing; each multiple eigenvalue should be counted accordind to its
multiplicity. Such renumbering establishes a one-to-one correspondence between eigenvalues
µ(k) and eigenfunctions Uk.

3.2 Solution of the spectral problem

In what follows we restrict ourselves to the case of contours L, Lin being star–like on S2 with
respect to North Pole, when L can be represented in the form

L = {(θ, ϕ) : θ = θ (ϕ), θ (ϕ) ∈ C(−∞, +∞), θ (ϕ) = θ (ϕ + 2 π) }

and Lin can be represented in a similar form.
The eigenfunctions of the problem (3.2), (3.3) are constructed using two systems of complex–

valued functions: {um(µ; θ, ϕ) }∞m =0 and { vm(µ; θ, ϕ) }∞m = 0 defined by the formulas:

um(µ; θ, ϕ) = Pm
µ (cos θ) e i m ϕ, vm(µ; θ, ϕ) = Pm

µ (− cos θ) e i m ϕ, (3.5)

where Pm
µ (t) are associated Legendre functions on the cut [27]. For short, in compli-

cated expressions we reduce the relations (3.5) to um (µ), vm (µ).
Note that if K is a circular cone, i.e. L is a circumference {θ = θ0 = const}, then

Re um(µ; θ, ϕ) and Im um(µ; θ, ϕ) are eigenfunctions of the problem (3.2), (3.3) with µ = µm
n

being the root of number n (n = 1, 2, . . . ) of the equation Pm
µ (cos θ0) = 0. Taking this fact

into account we rename and renumber eigenvalues µ(k) as µm
n and eigenfunctions U

(
µ(k); θ, ϕ

)

as Um +
n (θ, ϕ) and Um −

n (θ, ϕ).
Denoting restrictions of U m ±

n (θ, ϕ) to S in and S ex by U m ±
n, in(θ, ϕ) and

U m ±
n, ex(θ, ϕ), respectively, let represent the desired eigenfunctions in the form of expansions

in terms of functions (3.5):

Um ±
n, in = Re

∑∞

l=0
Am, l±

n um + l(µ), Am, 0+
n = 1, Am, 0−

n = i, (3.6)

U m±
n, ex = Re

∑∞

l=0

{
Bm, l±

n um + l(µ) + C m, l±
n vm + l(µ)

}
, µ = µm

n . (3.7)
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Observe that functions (3.6), (3.7) with any coefficients identically satisfy the equation (3.2).
Unknown eigenvalues µm

n and coefficients Am, l±
n , Bm, l±

n , C m, l±
n in representations (3.6), (3.7)

should be found from relations (3.3), which unite the transmission conditions on interface line
Lin and boundary condition on outer contour L.

We shall make it in the following way. Functions Um±
n (θ, ϕ) are sought as a limit

U m±
n (θ, ϕ) = lim

M→∞
U m±

n (M ; θ, ϕ)

of consequent approximations U m±
n (M ; θ, ϕ) written in the form of finite sums (3.6), (3.7) with

coefficients depending on the length M of approximation, i.e.

Um±
n, in(M ; θ, ϕ) = Re

M∑

l=0

Am, l±
n (M)um+l, Am, 0+

n (M) = 1, Am, 0−
n (M) = i, (3.8)

Um±
n, ex (M ; θ, ϕ) = Re

∑M

l=0

{
Bm, l±

n (M) um+l + C m, l±
n (M) vm +l

}
. (3.9)

Coefficients Am, l±
n (M), Bm, l±

n (M), Cm, l±
n (M) and approximate eigenvalues µm±

n (M) are
determined by substituting U m±

n (M) into the transmission and boundary conditions (3.3) and
by projecting the result onto the system of trigonometric functions exp (iqϕ):

(
Um±

n, ex(M), exp(iqϕ)
)

L

= 0,
(
Um±

n, ex(M) − Um±
n, in(M), exp(iqϕ)

)

Lin

= 0, (3.10)

(
κex ∂U

m ±
n, ex (M) / ∂ν − κin ∂U

m ±
n, in (M) / ∂ν, exp (i q ϕ)

)
Lin

= 0, (3.11)

where q = m, . . . ,m+M , and (f1, f2)L or (f1, f2)Lin
is the inner product in L2(L) or in L2(Lin).

Substituting representations (3.8), (3.9) into relations (3.10), (3.11) we obtain a system of linear
equations with respect to coefficients Am, l±

n (M), Bm, l±
n (M), C m, l±

n (M) :

Dm(µ) Z = 0, (3.12)

where

Z=
[
Am,0±

n (M), Bm,0±
n (M), Cm,0±

n (M), ..., Am,M±
n (M), Bm,M±

n (M), Cm,M±
n (M)

]T

is a vector of the coefficients. Elements of matrix Dm(µ) of system (3.12) are expressed as
integrals over contours L or Lin of products of functions (3.5) or there normal derivatives on
Lin; so, these elements depend only on number m and parameter µ.

In order to find a nontrivial solutions of homogeneous system (3.12), we equate the deter-
minant of its matrix to zero, and in the issue we obtain the relation det Dm(µ) = 0, which
should be considered as a transcidental equation with respect to µ. So, eigenvalue µm

n (M) is a
root of number n (n = 1, 2, . . .) of this equation.

The performed numerical experiments showed that the approximate eigenvalues and eigen-
functions converge to the exact ones. Namely, there hold the relations: 1) for any compact
E ⊂ S it holds

lim
M→∞

[
max

(θ, ϕ)∈E

∣∣∣U m±
n (M ; θ, ϕ) − U m±

n (θ, ϕ)
∣∣∣
]

= 0;

2) for all coefficients in (3.8), (3.9) it holds

Am, l±
n (M) → Am, l±

n , Bm, l±
n (M) → Bm, l±

n , Cm, l±
n (M) → Cm, l±

n as M → ∞;

3) for all eigenvalues it holds µm
n (M) → µm

n as M → ∞.
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3.3 Computation of integrals of frequently oscillating functions

One of important computational problems arising in the described algorithm is calculation of
elements of matrix Dm(µ) of system (3.12); those elements are expressed in the form of integrals
over contours L or Lin of the following type:

∫
Pa

µ

(
cos θ(ϕ)

)
exp( ibϕ ) dϕ , (3.13)

where θ(ϕ) is an equation of the contour; a and b are natural numbers, possibly very large. So,
(3.13) are integrals with frequently oscillating integrand; effective computation of those integrals
is a well–known challenging problem. A special analytic–numerical method has been developed
for computation of such integrals. This method represents integrals (3.13) as exponentially
convergent series involving integrals

∫ π/2

0
cosα t cos (βt) dt and related ones, which we have

computed explicitly via special functions, for whose computation high effective methods have
been developed [28]. Particularly,

∫ π/2

0

cosα t cos (βt) dt = π (1 + α) 2−1−α
[
B
(
1 +

α + β

2
, 1 +

α− β

2

) ]−1

,

where B(x, y) is Beta–function [27].

3.4 Numerical results

Note, that input data for the spectral transmission BVP (3.2), (3.3) consist, at first, of geometric
data, determined by outer contour L and interface line Lin, and, at second, of mechanical
quantity κ := κin/κex.

The method of solving this problem described in Sect. 3.2 has been realized for two types of
geometric data. For type I contour L is Lα turned to the angle δ L = {(θ, ϕ) : (θ, ϕ−δ) ∈ Lα} ,
and Lin = Lαin , αin > α. Remind, that contour Lα is defined by (2.1), (2.2).

For type II contour L = Lα, and interface line Lin = {(θ, ϕ) : θ = θ0, ∀ϕ}.
The dependence of eigenvalues µ0

1 and µ0
2 on κ is given on Fig. 1a and Fig. 1b,

respectively, for type I of geometric data and for two variants of parameters:
1) α = 5/12, δ = 1/6, αin = 7/12 , 2) α = 1/3, δ = 1/6, αin = 1/2. The graphs demonstrate
considerable dependence of eigenvalues on κ.

For type II of geometric data with parameters α = 5/12, θ0 = 2/3, κ = 10 the space
views of the first U0 +

1 and the second U0 +
2 eigenfunctions with eigenvalues µ0

1 = 0.090288
and µ0

2 = 1.453002 are displayed on Fig. 2 and Fig. 3, respectively. The space views represent
2D graphs of the eigenfunctions, in which coordinates (θ, ϕ) are transformed by stereographic
projection of the sphere S2 onto a plane (x1, x2), tangential to S2 at the North Pole.

4 The Solution of the Transmission BVP in Domain Ω

4.1 The Multipoles Ψk

In accordance with Theorem 2, all eigenvalues µm
n (M) can be enumerated as µ(k), k = 1, 2, . . .,

in order of their nondecreasing; each multiple eigenvalue should be counted according to its
multiplicity. Thus, there arises respective numeration of the eigenfunctions Um±

n

(
θ, ϕ

)
as
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U(µ(k); θ, ϕ) and, as a consequence, respective numeration of the multipoles Ψk(r, θ, ϕ); this
manner of their numeration had already appeared in (3.1).

If our cone K is in fact a polyhedral angle, then a suitable representation for the Multipoles
can be given. In order to formulate this representation let introduce a new system of spherical
co–ordinates (r,Θ,Φ) related to an edge of the polyhedral angle.

Let us select a particular edge and define new Cartesian co–ordinates X, Y, Z with their
origin at the vertex {0} of the polyhedral angle disposed in such a way that the selected edge
lies on axis Z, axis X lies on a face (or its extension), and axis Y is perpendicular to this face
and is directed inside domain K. Radial co–ordinate in the new system (r,Θ,Φ) coincides with
the above one, and angle co–ordinates are defined by the standard formulas Φ = arc tan (Y/X),
Θ = arc cos (Z/r). Denote the relation between old and new spherical co–ordinates by θ =
= θ(Θ, Φ), ϕ = ϕ(Θ, Φ). Then the desired representation for Uk (θ, ϕ) = Vk (Θ, Φ) has the
form

Vk (Θ, Φ) = Dm
k P−m/β

µk
(cos Θ) sin

mΦ

β
. (4.1)

Coefficients Dm
k in (4.1) can be computed as an integral over any curve {Θ = Θ0 = const} ⊂ Sex:

Dm
k = 2

[
π β P−m/β

µk
(cos Θ0)

]−1
∫ π β

0

Uk (θ, ϕ) sin
mΦ

β
dΦ,

where θ = θ (Θ0, Φ), ϕ = ϕ (Θ0, Φ).

4.2 The method of solving BVP

Now we turn to the transmission BVP (2.3)–(2.5) in domain Ω with cones of arbitrary base
as described in Sect. 2. Note that ∂Ω and γin may have at most a finite number of edges and

conical points. Since the boundary ∂Ω is Lipschitz, a Sobolev space
◦

W 1
2(D) is defined habitually

as a subspace of W 1
2 (D) consisting of functions having zero trace on ∂D. Obviously, the space

◦

W 1
2(D) is a Hilbert space with the inner product

[u, v;
◦

W 1
2(D)] =

∫

D

u v ds +

∫

D

(∇Γ u, ∇Γ v) ds ,

where ∇Γ stands for a tangential component to Γ of the gradient ∇. In the following theorem,
notation W 3/2

2 (Ω) stands for the Sobolev — Slobodetskii space with the norm, where standard
notations are used (see, e.g. [21], [23], [26]),

‖ψ;W
3/2

2 (Ω)‖2 = ‖ψ;W 1
2 (Ω)‖2 +

∑

|α|=1

∫

Ω×Ω

|Dα
x ψ(x) − Dα

y ψ(y)|2
|x − y|4 dx dy .

Theorem 3. Let hD ∈
◦

W 1
2(D) and hN ∈ L2(N). Then the generalized solution ψ ∈

◦

W 1
2(Ω, γ)

in Theorem 1 belongs to W
3/2

2 (Ω), and

‖ψ; W
3/2

2 (Ω)‖ ≤ C
(
‖hD;

◦

W 1
2(D)‖ + ‖hN; L2(N)‖

)
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with constant C > 0 depending only on Ω.

Due to the embedding W 3/2
2 (Ω) into W 1

2 (∂ Ω) the trace on ∂ Ω of the generalized solution
ψ ∈ W

3/2
2 (Ω) in Theorem 3 belongs to W 1

2 (∂ Ω). Denote by H(Γ) a space of all generalized

solutions ψ ∈
◦

W 1
2(Ω, γ) ∩ W

3/2
2 (Ω) in Theorem 3 with boundary data hD ∈

◦

W 1
2 (D) and

hN ∈ L2(N). Clearly, Theorem 3 implies that H (Γ) is a Hilbert space with the inner product

[u, v]H =

∫

D

uvds+

∫

D

(∇Γu, ∇Γv)ds+

∫

N

∂νu∂νv ds.

For u ∈ W
3/2
2 (Ω), existence of the trace ∇Γu ∈ L2(D) is guaranteed by the embedding of

W
3/2

2 (Ω) into W 1
2 (∂ Ω). Notice that existence of trace ∂νu ∈ L2(N) is guaranteed only for the

functions u ∈ H(Γ) by virtue of Theorem 3.
For basic functions {Ψk} constructed in Sect. 3 it holds

Theorem 4. The traces on Γ of the basic functions {Ψk} form a complete system in H(Γ)
which is minimal.

Proof of the completeness in Theorem 4 is based on the approximation theorems by F. Browder
[29] for solutions of elliptic PDEs. Theorems [29] can be readily modified to include homogeneous
boundary conditions on some part of the boundary.

A Cartesian product H(D,N)
def
=

◦

W 1
2 (D) × L2(N) consisting of ordered pairs {a

D
, a

N
},

a
D
∈

◦

W 1
2(D), a

N
∈ L2(N), is a Hilbert space with the inner product

[
{a

D
, a

N
}, {b

D
, b

N
}
]
H

=

∫

D

a
D
b

D
ds+

∫

D

(∇Γ aD
, ∇Γ bD

)ds+

∫

N

a
N
b

N
ds

which induces the norm

‖a
D
, a

N
‖2

H =

∫

D

|a
D
|2ds+

∫

D

|∇Γ aD
|2ds+

∫

N

|a
N
|2 ds.

Let L : H(Γ) → H(D, N) be a linear operator defined as Lψ =
{
ψ
∣∣
D
, ∂νψ

∣∣
N

}
∀ψ ∈ H(Γ).

From Theorem 3 it follows

Corollary 1. The linear operator L is an isometry of H(Γ) onto H (D, N).

For the basic functions {Ψk}, from Corollary 1 and Theorem 4 follows

Corollary 2. The system {LΨk} is complete and minimal in H (D, N).

Applying Corollary 2, we approximate the solution ψ(r, θ, ϕ) of the BVP (2.3)–(2.5) by a
sequence {ψ(N)(r, θ, ϕ)} of linear combinations with respect to the first N basic functions Ψk:

ψ(r, θ, ϕ) = lim
N→∞

ψ(N)(r, θ, ϕ), ψ(N)(r, θ, ϕ) =
∑N

k=1
Q

(N)
k Ψk(r, θ, ϕ). (4.2)

Here coefficients Q(N)
k are to be found using the condition of the least square deviation of the

approximate solution ψ(N) from the boundary function h = {h
D
, h

N
} ∈ H(D,N) corresponding

to (2.6) on Γ: ‖Lψ(N) − h‖H → min. This condition leads to the following system of linear
equations with respect to the unknown coefficients Q(N)

k , where l = 1, 2 . . . , N :

∑N

k=1
Q

(N)
k Gl

k = hl , Gl
k = [LΨk, LΨl]H , hl = [h, LΨl]H .
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The method of least squares guarantees the convergence of the sequence Lψ(N) in the Hilbert
space H(D,N), whence by Corollary 1 follows the convergence of the sequence ψ(N) in the
Hilbert spaceH(Γ). Now for the sequence of approximate solutions {ψ(N)}, reference to Theorem

3 completes the proof of its convergence in W
3/2
2 (Ω) to the exact solution ψ ∈

◦

W 1
2 (Ω, γ)∩

∩W 3/2
2 (Ω).

4.3 Asymptotics near the edges

Turn again to the selected edge mentioned in Sect. 4.1. Introduce a cylindrical system of co–
ordinates related to this edge by the use of the Cartesian X, Y, Z and the spherical (r,Θ,Φ)
co–ordinate systems defined in Sect. 4.1. Namely, let Z be the co–ordinate from the above
Cartesian system, Φ the co–ordinate from the above spherical system, and ̺ is defined by the
formula ̺ =

√
r2 − Z2. Then the desired cylindrical co–ordinate system is (̺, Z,Φ).

Starting from the view (4.2) of the solution and using representation (4.1) for the multipoles
we derive an asymptotics for the solution of the BVP near the edge with dihedral angle of value
πβ when ̺→ 0, Z → 0:

Ψ ∼ ̺1/βsin
Φ

β

[
I1, 1 Z

µ1−1/β + . . .
]
+ ̺2/βsin

2Φ

β

[
I2, 1 Z

µ2−1/β + . . .
]
+ . . . .

Quantities I1,1 and I2,1 appearing here can be expressed via coefficients of expan-
sions (4.1), (4.2), in particular I1, 1 = 2−1/β [Γ(1 + 1/β)]−1Q1D

1
1, where Γ(x) is Gamma–

function [27].
Note that coefficients Qn

k in expansion (4.2) are named intensity factors at the vertex of the
cone (polyhedral angle) and quantities I1,1, I2,1 the intensity factors at its edge. From what was
said it follows that our method provides computation of all mentioned intensity factors along
with the solution itself.

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

1)

2)




0 1 2 3 4 5
1.3

1.4

1.5

1.6

1.7

1.8

1.9

1)

2)

Fig. 1a. Fig. 1b.

µ0
1 µ0

2

κ κ

Fig. 1. Dependence of eigenvalues µ0
1 and µ0

2 on κ for type I of geometric
data and for two variants of parameters: 1) α = 5/12, δ = 1/6, αin = 7/12 , 2) α = 1/3,
δ = 1/6, αin = 1/2.
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Fig. 2. Space view of the first eigenfunction U 0+
1 with parameters α = 5/12,

θ0 = 2/3, κ = 10 and eigenvalue µ0
1 = 0.090288.
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θ0 = 2/3, κ = 10 and eigenvalue µ0
2 = 1.453002.



S.L. Skorokhodov, V.I. Vlasov. The multipole ... 100

Bibliography
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МЕТОД МУЛЬТИПОЛЕЙ ДЛЯ НЕКОТОРЫХ ЭЛЛИПТИЧЕСКИХ
КРАЕВЫХ ЗАДАЧ С РАЗРЫВНЫМ КОЭФФИЦИЕНТОМ

С.Л. Скороходов, В.И. Власов
Вычислительный центр им. А.А.Дородницына РАН,

ул. Вавилова, 40, Москва, 119991, Россия e-mail: skor@ccas.ru,vlasov@ccas.ru

Аннотация. Разработан аналитико-численный метод решения краевых задач в простран-

ственных областях с конусами произвольного основания для эллиптического уравнения с кусочно-

постоянным коэффициентом. Решение задачи находится с использованием специальных базис-

ных функций – мультиполей, которые строятся в явном виде. Метод обеспечивает высокоточное

вычисление решения, его производных, показателей сингулярности и коэффициентов интенсив-

ности вблизи геометрических особенностей – ребер и вершины конуса.

Ключевые слова: краевые задачи, области с конусами, метод мультиполей, показатели син-

гулярности, коэффициенты интенсивности.
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GENERALIZED POTENTIALS OF DOUBLE LAYER
FOR SECOND ORDER ELLIPTIC SYSTEMS

A.P.Soldatov
Belgorod State University

Pobedy str., 85, Belgorod, 308015, Russia, e-mail: Soldatov@bsu.edu.ru

Abstract. Second order elliptic systems on the plane are considered. The notion of generalized

potentials of double layer for these systems is introduced.

Keywords: second order elliptic systems, lame system, potentials of double layer, Dirichlet problem.

1 Second order elliptic systems

Let us consider the elliptic system of second order

2∑

i,j=1

aij
∂2u

∂xi∂xj
= 0, u = (u1, . . . , ul), x1 = x, x2 = y,

with constant and only leading coefficients aij ∈ IRl×l. In view of the elliptic condition

det
(∑

aijλiλj

)
6= 0, λ1, λ2 ∈ R,

the characteristical polynomial

χ(z) = det p(z), p(z) = a11 + (a12 + a21)z + a22z
2

has no real roots. Let σ+ denote a set of all these roots in the upper half-plane.
Let D ⊆ C2 be a finite domain with a smooth boundary Γ = ∂D. As it’s well known the

Dirichlet problem
u
∣∣
Γ

= f

isn’t always Fredholm. The first example of this type belongs to A. V. Bitsadze[1]. He noticed
that the homogeneous Dirichlet problem for elliptic system with coefficients (l = 2)

a11 = −a22 = 1, a12 = a21 =

(
0 ±1
∓1 0

)

in the unite circle has infinitely linear independent solutions.
Later A. V. Bitsadze introduced the notion of the so-called weakly connected elliptic systems

for which the Dirichlet problem is Fredholm. According to modern elliptic theory this requirement
simply implies that the corresponding Shapiro- Lopatinski condition holds[2]. It‘s convenient
to formulate this condition in the following way.

The elliptic system is weakly connected iff

The work was supported in part by the Russian Foundation of Basic Research (RFBR)(project No. 07-01-
00299) and by the National Natural Science Foundation of China (NSFC) in the framework of the bilateral
project "Complex Analysis and its applications"(project No. 08-01-92208-GFEN).
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det

[∫

R

p−1(λ)dλ

]
6= 0.

The Bitsadze example stimulated the definitions of the various classes of elliptic systems for
which the Dirichlet problem is Fredholm. The most important of them was the notion of strong
elliptic system introduced by M. I. Vishik[3]. They are defined by the condition of positive
definiteness of the matrix

2∑

i,j=1

aijλiλj > 0

for all λ,λ2 ∈ IR, |λ1| + |λ2| 6= 0.
In this case the matrix p−1(λ) is also positive definite, so these systems are really weakly

connected. More restrict condition was introduced earlier by C. Somigliano[4] and is expressed
in the form

a =

(
a11 a12

a21 a22

)
> 0.

The intermediate position between these definitions occupies the notion of the strengthened
elliptic system [5]. By definition this system have to be elliptic and the matrix a ≥ 0. Note
that another classification of elliptic systems in the case l = 2 is given by Lin Wei[6] and Wu
Ci-Quian[7].

2 Generalized potentials of double layer

Let the elliptic system be weakly connected. As it will be said earlier then the Dirichlet problem
is Fredholm. More exactly the following result is valid [8]. Here and below C+0(E) implies the
Holder class ∪µ>0C

µ(E).
Let Γ = ∂D be Lyapunov contour i.e. its inner normal n(t) = n1(t) + in2(t) ∈ C+0(Γ) and

let f ∈ C+0(Γ). Then homogeneous Dirichlet problem has a finite number linear independent
solutions u1, . . . , un ∈ C+0(D) and there exist a real vector- valued linear independent functions
g1, . . . , gn ∈ C+0(Γ) such that nonhomogeneous Dirichlet problem is solvable in C+0(D) iff

(f, gi) = 0, 1 ≤ i ≤ n,

where

(f, g) =

∫

Γ

f(t)g(t)|dt|.

The case of strengthened elliptic system is remarkable as n = 0 for these systems. In other
words the Dirichlet problems for a strengthened elliptic system is uniquely solved.

The main result of this talk is the following: if f ∈ C(Γ) satisfies the orthogonality conditions
then the Dirichlet problem is solvable in the class C(D).

Our approach is based on using generalized potentials of double layer for the elliptic system.
From the weakly connected property it follows the following lemma: there exists the unique
matrix J ∈ Cl×l such that

a11 + (a12 + a21)J + a22J
2 = 0,

σ(J) = σ+, det(Im J) 6= 0.
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Recall that σ+ denotes a set of all roots in the upper half-plane of the characteristical
polynomial χ(z) = det p(z), p(z) = a11 + (a12 + a21)z + a22z

2. The matrix J is called a
characteristical matrix of the elliptic system. If it is diagonal then the system reduces to l
scalar equations. More exactly the exists an invertible matrix c such that all matrixes caij are
diagonal. So we may suggest that J is not diagonal.

Let us put

Q(t, ξ) =
n1(t)ξ1 + n2(t)ξ2

|ξ|2 H(ξ),

H(ξ) = Im [(−ξ21 + ξ1J)(ξ11 + ξ2J)−1],

where 1 implies the unit matrix and n is the unit vector of inner normal. Then the integral

(Pϕ)(z) =
1

π

∫

Γ

Q(t, t− z)ϕ(t)|dt|, z ∈ D,

describes solutions of the elliptic system. Note that for H = 1 this integral corresponds to the
classical potentials of double layer for Laplace equation. The following theorem shows that Pϕ
plays an analogous role for the elliptic system.

The integral operator P is bounded C(Γ) → C(D) and

(Pϕ)+(t0) = ϕ(t0) +

∫

Γ

Q(t, t− t0)ϕ(t)|dt|, t0 ∈ Γ.

Let Kϕ imply the integral on the right hand side. Under assumptions n(t) ∈ C+0(Γ) the kernel
k(t0, t) = (t−t0)Q(t, t−t0) belongs to C+0(Γ×Γ) and k(t, t) ≡ 0. So the operator K is compact
in C(Γ).

Theorem. The exist a finite-dimensional space X ⊆ C+0(D) of solutions of the elliptic
system and a space Y ⊆ C+0(Γ) of the same dimension such that each solution u ∈ C(D) of
the elliptic system is uniquely represented in the form

u = Pϕ+ u0, u0 ∈ X,

where ϕ ∈ C(Γ) satisfies the orthogonality condition (ϕ, g) = 0, g ∈ Y .
If the system is strengthened elliptic then in this representation X = 0, Y = 0.
The theorem shows that the Dirichlet problem is equivalent to the following system of

Fredholm integral equations:

ϕ+Kϕ +
m∑

1

λiui = f,

(ϕ, gi) = 0, i = 1, . . . , m,

where u1, . . . , um and g1, . . . , gm are basises of X and Y respectively.
In the case l = 2 the matrix H(ξ) can be described explicitly. In this case there are only

two possibility for σ+ when (i) σ+ = {ν1, ν2}, ν1 6= ν2, and (ii) σ+ = {ν}. So the exists an
invertible matrix b ∈ C2×2 such that

(i) bJb−1 =

(
ν1 0
0 ν2

)
, (ii) bJb−1 =

(
ν 1
0 ν

)
.
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The case bJb−1 = ν is excluded as the matrix J is not diagonal. Note that the matrixes

E1 = b

(
1 0
0 0

)
b−1, E2 = b

(
0 1
0 0

)
b−1,

don’t depend on the choice of b.
In this terms we have:

(i) H(ξ) = (Im2ν2)g(ξ, ν2) + Im[(ν1 − ν2)g(ξ, ν1)g(ξ, ν2)E1],

(ii) H(ξ) = (Im2ν)g(ξ, ν) + Im[g2(ξ, ν)E2],

where g(ξ, ν) = |ξ|(ξ1 + νξ2)
−1.

3 Applications to the plane elasticity

The plane elastic medium is characterized by the displacement vector u = (u1, u2) and by stress
and deformation tensors

σ =

(
σ1 σ3

σ3 σ2

)
, ε =

(
ε1 ε3

ε3 ε2

)
,

where

εi =
∂ui

∂xi
, i = 1, 2, 2ε3 =

∂u1

∂x2
+
∂u1

∂x2
.

They are connected by Hooke law i.e. by linear relation

σ̃ = αε̃, α =




α1 α4 α5

α4 α2 α6

α5 α6 α3


 > 0,

where σ̃ = (σ1, σ2, σ3), ε̃ = (ε1, ε2, 2ε3).
If the external forces are absent then the equilibrium equations have the form

∂σ(1)

∂x1

+
∂σ(2)

∂x2

= 0,

where σ(j) means j−column of the matrix σ. Using the Hooke law we receive the Lame system

a11
∂2u

∂x2
+ (a12 + a21)

∂2u

∂x∂y
+ a22

∂2u

∂y2
= 0

for the replacement vector u with the coefficients aij , defined by the matrix

a =

(
a11 a12

a21 a22

)
=




α1 α6 α6 α4

α6 α3 α3 α5

α6 α3 α3 α5

α4 α5 α5 α2


 .

This system is strengthened elliptic and rang a = 3.
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The elastic medium is called orthotropic if α5 = α6 = 0, α3 +α4 6= 0, and isotropic if α5 =
α6 = 0, α1 = α2 = 2α3+α4. We can also point out the special case α5 = α6 = 0, α3+α4 = 0.
In this case the Lame system reduces to scalar equations

α1
∂2u1

∂x2
+ α3

∂2u1

∂y2
= 0, α3

∂2u2

∂x2
+ α2

∂2u2

∂y2
= 0.

So this case we put away below.
Let us consider the characteristic polynomial of Lame system

p(z) = a11 + (a12 + a21)z + a22z
2 =

(
p1 p3

p3 p2

)
,

where p1(z) = α1 + 2α6z + α3z
2, p2(z) = α3 + 2α5z + α2z

2, p3(z) = α6 + (α3 + α4)z + α5z
2.

In the case (i) we can put

E1 =
1

p2(ν2)p3(ν1) − p2(ν1)p3(ν2)

(
−p2(ν1)p3(ν2) −p2(ν1)p2(ν2)
−p3(ν1)p3(ν2) p2(ν2)p3(ν1)

)
,

if one of the following conditions (∗)

α2
3 < α1α2, α

2
5 < α2α3, α2α6 = α3α5, α2(α3 + α4) = 2α2

5,

disturbs and

E1 =
1

p1(ν1)p3(ν2) − p1(ν2)p3(ν2)

(
−p1(ν2)p3(ν1) −p3(ν1)p3(ν2)
−p1(ν1)p1(ν2) p1(ν1)p3(ν2)

)
,

if one of the following conditions (∗∗)

α2
3 < α1α2, α

2
6 < α1α3, α1α5 = α3α6, α1(α3 + α4) = 2α2

6

disturbs.
In the case (ii) we can put

E2 =
1

p′2(ν)p3(ν) − p2(ν)p′3(ν)

(
p2(ν)p3(ν) p2

2(ν)
−p2

3(ν) −p2(ν)p3(ν)

)
.

Note that fulfilments of both conditions (∗) and (∗∗) is equivalent to the special case α5 =
α6 = 0, α3 + α4 = 0 when the Lame system is diagonal.

In the orthotropic case the polynomial pj are simplify:

p1(z) = α1 + α3z
2, p2(z) = α3 + α2z

2, p3(z) = (α3 + α4)z,

so in this case

E1 =
(α3 + α4)

−1

ν1p2(ν2) − ν2p2(ν1)

(
−p2(ν1)(α3 + α4)ν2 −p2(ν1)p2(ν2)
−(α3 + α4)

2ν1ν2 p2(ν2)(α3 + α4)ν1

)
,

E1 =
(α3 + α4)

−1

ν2p1(ν1) − ν1p1(ν2)

(
−p1(ν2)(α3 + α4)ν1 −(α3 + α4)

2ν1ν2

−p1(ν1)p1(ν2) p1(ν1)(α3 + α4)ν2

)
,
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respectively to (∗), (∗∗) and

E2 =
1

α3ν2 − α2

(
ν(α2 + α3ν

2) (α3 + α4)
−1(α2 + α3ν

2)2

−(α3 + α4)ν
2 −ν(α2 + α3ν

2)

)
.

Especially the simple picture we have in the orthotropic case when ν = i and α1 = α2 = 2α3+α4.
In this case

E2 = − 1

æ

(
i 1
1 −i

)
, æ =

α1 + α3

α1 − α3
,

and therefor

H(ξ) =

(
1 0
0 1

)
+

1

æ|ξ|2
(
ξ2
2 − ξ2

1 2ξ1ξ2
2ξ1ξ2 ξ2

1 − ξ2
2

)
.

Another function theoretical approaches for orthotropic Lame system were suggested by R
P.Gilbert[9, 10].
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ОБОБЩЕННЫЙ ПОТЕНЦИАЛ ДВОЙНОГО СЛОЯ ДЛЯ
ЭЛЛИПТИЧЕСКИХ СИСТЕМ ВТОРОГО ПОРЯДКА

А.П. Солдатов
Белгородский государственный университет,

ул. Победы, 85, Белгород, 408015, Россия e-mail: Soldatov@bsu.edu.ru

Аннотация. Рассматриваются эллиптические слабо связанные (по терминологии А.В. Би-

цадзе) системы второго порядка с постоянными (и только старшими) коэффициентами. Для этих

систем вводится понятие потенциалов двойного слоя, не связанное с фундаментальным решением.

Оно позволяет редуциовать задачу Дирихле к эквивалентной системе интегральных уравнений

Фредгольма на границе области.

Ключевые слова: эллиптические системы второго порядка, системы Ламэ, потенциал двой-

ного слоя, задача Дирихле.
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Abstract. In this paper, we use the idea of sharing set to prove: Let F be a family of holomorphic

functions in the unit disc, a1 and a2 be two distinct finite numbers and a1 + a2 6= 0. If for any f ∈ F,

Ef (S) = Ef ′(S), S = {a1, a2}, in the unit disc, then f is an α-normal function.

Keywords: entire functions, uniqueness, Nevanlinna theory, normal family.

1 Introduction and main results

Let D be a domain in C and let F be a family of meromorphic functions defined in D. The
family F is said to be normal in D, in the sense of Montel, if each sequence {fn} ⊂ F contains a
subsequence {fnj

} that converges, spherically locally uniformly inD, to a meromorphic function
or to ∞.(see. [10])

In this paper, we assume that f, g are two meromorphic functions on D and S1, S2 are
two sets. We denote Ef(S1) ⊂ Eg(S2) by f(z) ∈ S1 ⇒ g(z) ∈ S2. If Ef (S1) = Eg(S2), we
denote this condition by f(z) ∈ S1 ⇔ g(z) ∈ S2. Similarly, if Ef (S1) = Eg(S2), we denote
this condition by f(z) ∈ S1 ⇋ g(z) ∈ S2. If the set S has only one element, say a, we denote
f(z) ∈ S by f(z) = a (see [15]).

Schwick[14] was the first to draw a connection between values shared by functions in F (and
their derivatives) and the normality of the family F. Specially, he showed that if there exist
three distinct complex numbers a1, a2, a3 such that f and f ′ share aj(j = 1, 2, 3) in D for each
f ∈ F, then F is normal in D. Pang and Zalcman [9] extended this result as follows.

Theorem A. Let F be a family of meromorphic functions in a domain D, and let a, b, c, d
be complex numbers such that c 6= a and d 6= b. If for each f ∈ F we have f(z) = a⇔ f ′(z) = b
and f(z) = c⇔ f ′(z) = d, then F is normal in D.

Definition 1.1 (see. [6, 7]) A meromorphic function f is a normal function in the unit disc
D if and only if there exists a constant C(f) (which depends on f) such that

(1 − |z|2)f ♯(z) < C(f),

where f ♯(z) = |g′(z)|/(1 + |g(z)|2) is the spherical derivative of f .

In 2000, X.C. Pang [8] considered the normal function by using the condition of share values.
Theorem B. Let F be a family of meromrophic functions in the unit disc, a1, a2 and a3 be

three distinct finite numbers. If for any f ∈ F,

Ef(ai) = Ef ′(ai), i = 1, 2, 3,

The author was supported by the NSF of China (10771121), the NSF of Guangdong Province
(9452902001003278) and Excellent Young Fund of Department of Education of Guangdong (LYM08097).
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in the unit disc, then there exists a positive M , such that for every f ∈ F, we have

(1 − |z|2)f ♯(z) < M,

where M depends on a1, a2 and a3.
In fact, from the proof of Theorem B, one can get the following corollary.

Corollary 1.2 Let F be a family of holomorphic functions in the unit disc, a1 and a2 be two
distinct finite numbers. If for any f ∈ F,

Ef (ai) = Ef ′(ai), i = 1, 2,

in the unit disc, then the conclusion of Theorem B holds.

Recently, there exist a lot of studies in using the shared set to obtain the normal family(see.
[2, 4, 5]). X.J. Liu obtained a normal function by using the share set S = {a1, a2, a3} corresponding
Theorem B. Naturally, we ask whether there exists a normal function by using the shared set
S = {a1, a2} corresponding to Corolllary 1.2? In this paper, we study the question and get the
following result.

Theorem 1.3 Let F be a family of holomorphic functions in the unit disc, a1 and a2 be two
distinct finite numbers and a1 + a2 6= 0. If for any f ∈ F,

Ef (S) = Ef ′(S), S = {a1, a2},

in the unit disc, then there exists a positive M , such that for every f ∈ F, we have

(1 − |z|2)f ♯(z) < M,

where M depends on S.

In the following, we give a example to show the condition a1 + a2 6= 0 is necessary.

Example 1.4 ([5]) Let S = {−1, 1}. Set F = {fn(z) : n = 2, 3, 4, . . .}, where

fn(z) =
n + 1

2n
enz +

n− 1

2n
e−nz, D = {z : |z| < 1}.

Then, for any fn ∈ F, we have

n2[f 2
n(z) − 1] = f ′2

n (z) − 1.

Thus fn and f ′
n share S CM, but fn is not a normal function in D.

From Case 1 in the proof of Theorem 1.3, we can easily get the following corollary.

Corollary 1.5 Let F be a family of functions holomorphic in a domain D, let a be a nonzero
finite complex numbers. If for all f ∈ F, f and f ′ share S = {0, a} IM, then the conclusion of
the theorem 1.3 holds.

The following example shows that it is necessary that the complex numbers a is finite.
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Example 1.6 Let S = {0,∞}. Set F = {enz : n = 1, 2, . . .} in the unite disc ∆, thus fn = enz

and f ′
n = nenz share S, but f is not a normal function in ∆.

Definition 1.7 ([11]) Given 0 < α <∞, if there exists a constant Cα(f) such that

(1 − |z|2)αf ♯(z) < Cα(f),

for each z ∈ D, we say that f is an α-normal function in D.

α-normal functions may be viewed as the generalizations of normal functions. If we denote
by N the class of the normal functions in D and denote by Nα the class of the α-normal
functions in D, it is obvious that

Nα1 ⊂ N ⊂ Nα2

for 0 < α1 < 1 < α2 < ∞. The above inclusion relations are strict(see.[12]). Similarly, we can
get the following generalized result.

Theorem 1.8 Let α ≥ 1, and let F be a family of holomorphic functions in the unit disc, a1

and a2 be two distinct finite numbers and a1 + a2 6= 0. If for any f ∈ F,

Ef (S) = Ef ′(S), S = {a1, a2},
in the unit disc, then there exists a positive M , such that for every f ∈ F, we have

(1 − |z|2)αf ♯(z) < M,

where M depends on S.

2 Lemmas

Lemma 2.1 ([9]) Let F be a family of functions meromorphic on the unit disc, all of whose
zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A
whenever f ∈ F and f(z) = 0, f ∈ F. Then if F is not normal, then there exist, for each
0 ≤ λ ≤ k,

(a) a number 0 < r < 1;
(b) points zn, zn < 1;
(c) functions fn ∈ F, and
(d) positive number ρn → 0 such that ρ−λ

n fn(zn + anξ) = gn(ξ) → g(ξ) locally uniformly,
where g is a nonconstant meromorphic function on C such that g♯(ξ) ≤ g♯(0) = A + 1.

The normal lemma is for α-normal functions corresponding to Lemma 2.1.

Lemma 2.2 Let F be a family of functions meromorphic on the unit disc, all of whose zeros
have multiplicity at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever
f ∈ F and f(z) = 0, f ∈ F. Then if F is not an α-normal function, then there exist, for each
0 ≤ λ ≤ k and 1 ≤ α <∞, there exist a sequence of points {zn} in D and a sequence of positive
numbers {ρn} such that |zn| → 1, ρn → 0, and the sequence of functions

{gn(ζ)} = ρ−λ
n f(zn + (1 − |zn|2)αρnζ)

converges spherically and locally uniformly to a non-constant Yosida function in the ζ-plane.

Remark. The case 0 ≤ λ < k is first proved by Chen and Wulan, see [12, 13] for a detail.
We can prove the above lemma by the similar method with [13].
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3 Proof of Theorem 1.8

Suppose, to the contrary, that we can find |zn| < 1 and fn ∈ F such that

gn(z) = fn(zn + (1 − |zn|2)αz) (3.1)

satisfy
lim

n→∞
g♯(0) = lim

n→∞
(1 − |zn|2)αf ♯(zn) = ∞.

Hence {gn(z)} is not normal in the unit. By Lemma 2.1, we can find the positive number r,
0 < r < 1; the complex numbers ζn, |ζn| < 1; ρn → 0+ and gn ∈ F such that

Gn(ζ) = gn(ζn + ρnζ) = fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρnζ)

locally uniformly to a nonconstant entire function G(ζ) on C.
We know G is a nonconstant entire function. Without loss of generality, we can assume that

G− a1 has zeros in C. Let ζ0 is a zero of G− a1. Consider the family

H = {Hn(ζ) : Hn(ζ) =
Gn(ζ) − a

(1 − |zn|2)αρn

}.

We claim H is not normal at ζ0. In fact,G(ζ0) = a1 and G(ζ) 6≡ a1. From (3.1) and Hurwitz’s
Theorem, there exist ζn, ζn → ζ0 and Gn(ζn) = a1. Then Hn(ζn) = 0. However, there exists
a positive number δ such that ∆δ = {z ∈ D : 0 < |ζ − ζ0| < δ} ⊂ D and G(ζ) 6= a1 in ∆δ.
Thus for each ζ ∈ ∆δ, Gn(ζ) 6= a1 (for n sufficiently large). Therefore for each ζ ∈ ∆δ, we have
H(ζ) = ∞. Thus we have proved that H is not normal at ζ0.

Noting that
Hn(ζ) = 0 ⇒ H ′

n(ζ) = a1 or a2,

and using the Lemma 2.1 again we can find τn → τ0, ηn → 0 and Hn ∈ H such that

Fn(ξ) =
Hn(τn + ηnξ)

ηn
=
Gn(τn + ρnξ) − a1

ηn

=
fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξ)) − a1

(1 − |zn|2)αρnηn

locally uniformly convergence to F (ξ) on C, where F is a nonconstant entire function such that
F ♯(ξ) ≤ F ♯(0) = M. In particular ρ(F ) ≤ 1.

We claim that
(1) F only has finitely many zeros.
(2) F (ξ) = 0 ⇔ F ′(ξ) = a1 or a2.
We first prove Claim (1). Suppose ζ0 is a zero of G(ζ) − a1 with multiplicity k. If F (ξ) has

infinitely many zeros, then there exist k + 1 distinct points ξj (j = 1, · · · , k + 1) satisfying
F (ξj) = 0 (j = 1, · · · , k + 1). Noting that F (ξ) 6≡ 0, by Hurwitz’s Theorem, there exists N , if
n > N , we have Fn(ξjn) = 0 (j = 1, · · · , k + 1) and Gn(τn + ηnξjn) − a1 = 0. We have

lim
n→∞

ζn + ηnξjn = ζ0, (j = 1, · · · , k + 1)

then ζ0 is a zero of G(ζ) − a1 with multiplicity at least k + 1, which is a contradiction. Thus
we have proved Claim (1).
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Next we prove Claim (2). Suppose that F (ξ0) = 0, then by Hurwitz’s Theorem, there exist
ξn, ξn → ξ0, such that (for n sufficiently large)

Fn(ξn) =
fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) − a1

(1 − |zn|2)αρnηn
= 0.

Thus fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) = a1. By the assumption, we have

f ′
n(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξ)) = a1 or a2,

hence

F ′(ξ0) = lim
n→∞

f ′
n(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) = a1 or a2.

Thus we prove F (ξ) = 0 ⇒ F ′(ξ) = a1 or a2.
In the following, we will prove F ′(ξ) = a1 or a2 ⇒ F (ξ) = 0.
Suppose that F ′(ξ0) = a1. Obviously F ′ 6≡ a1, for otherwise F ♯(0) ≤ |F ′(0)| = |a1| < M ,

which is a contradiction. Then by Hurwitz’s Theorem, there exist ξn, ξn → ξ0, such that (for n
sufficiently large)

F ′
n(ξn) = f ′

n(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) = a1.

It follows that Fn(ξn) = fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) = a1 or a2.
If there exists a positive integer N , for each n > N , we have

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) = a2.

Then

F (ξ0) = lim
n→∞

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) − a1

(1 − |zn|2)αρnηn
= ∞,

it contradicts with F ′(ξ0) = a1. Hence there exists a subsequence of {fn}(which, renumbering,
we continue to denote by {fn}) satisfying that

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) = a1.

Thus we derive

F (ξ0) = lim
n→∞

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξn)) − a1

(1 − |zn|2)αρnηn
= 0,

which implies F ′ = a⇒ F = 0. Similarly, we can get F ′ = a2 ⇒ F = 0. Hence we have proved
claim (2).

Since ρ(F ′) = ρ(F ) ≤ 1, then by the Nevanlinna’s second fundamental theorem,

T (r, F ′) ≤ N(r,
1

F ′ − a1

) +N(r,
1

F ′ − a2

) + S(r, F ′)

≤ N(r,
1

F ′ − a1
) +N(r,

1

F ′ − a2
) +O(log r)

≤ N(r,
1

F
) +O(log r)

(3.2)
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From Claim (1), we get N(r, 1
F
) = O(log r). Thus T (r, F ′) = O(log r), it is clear that F is

a polynomial.

In the following, we consider two cases:
Case 1: a1a2 = 0. Without loss of generality we assume a1 = 0. We know that F ′ has

zeros, then F has multiple zeros. We assume deg(F ) = n, then T (r, F ′) = (n − 1)log r and
S(r, F ′) = O(1). By (3.2) we get

T (r, F ′) = (n− 1)log r ≤ N(r,
1

F
) +O(1) ≤ (n− 1)log r

Thus we derive that F only has one multiple zeros with multiplicity 2 and F ′ only has one zero
with multiplicity 1, which yields that n = 2. Set F ′ = B(ξ − ξ0), then F = (B/2)(ξ − ξ0)

2,
which contradicts with F ′ = a2 ⇒ F = 0. This completes the proof of Case 1.

Case 2: a1a2 6= 0. We first prove F = 0 ⇋ F ′ = a1 or a2. From a1a2 6= 0, we get F = 0 →
F ′ = a1 or a2. Thus we only need to prove F ′ = a1 or a2 → F = 0.

Suppose ξ0 is a zero of F ′ − a1 with multiplicity m. By Rouché theorem, there exist m
sequences {ξin}(i = 1, 2 · · · , m) on Dδ/2 = {ξ : |ξ − ξ0| < δ/2} such that F ′

n(ξin) = a1. Then

f ′
n(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξin)) = F ′

n(ξin) = a1 (i = 1, 2, · · · , m).

By f and f ′ share {a1, a2} CM, we get f ′ − a1 only has simple zeros. That is ξin 6= ξjn(1 ≤ i 6=
j ≤ m). We obtain

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξin)) = a1 or a2 (i = 1, 2, · · · , m).

We claim that there exist infinitely many n satisfying

fn

(
zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξin)

)
= a1 (i = 1, 2, · · · , m). (3.3)

Otherwise we may assume that for all n, there exist j ∈ (1, . . . , m) satisfying

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξin)) = a2.

We take a fixed number l ∈ (1, ..., m) satisfying (for infinitely many n)

fn(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξin)) = a2.

Hence

F (ξ0) = lim
n→∞

f ′
n(zn + (1 − |zn|2)αζn + (1 − |zn|2)αρn(τn + ηnξin)) − a1

(1 − |zn|2)αρnηn

= lim
n→∞

a2 − a1

(1 − |zn|2)αρnηn
= ∞,

which contradicts with F ′(ξ0) = a1. This proves (3.3). Therefore,

Fn(ξin) = 0, (i = 1, 2, · · · , m)
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and ξin 6= ξjn (1 ≤ i 6= j ≤ m). As n → ∞, we get ξ0 is a zero of F with multiplicity at least
m. This proves F ′ = a1 → F = 0. Similarly we can get F ′ = a2 → F = 0. Thus we have proved

F = 0 ⇋ F ′ = a1 or a2.

From this we know F ′ − a1 and F ′ − a2 only have simple zeros. Suppose that deg(F ) = n, then
n = 2(n− 1) and n = 2. Set F = A(ξ − ξ1)(ξ − ξ2), then F ′ = A(2ξ − ξ1 − ξ2).

Without loss of generality, we assume that F ′(ξ1) = a1 and F ′(ξ2) = a2, we get a1 + a2 = 0.
It is a contradiction.

Thus we complete the proof of Theorem 1.3.
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Аннотация. В работе идея разделенного множества применяется к описанию нормальных

функций для семейства мероморфных функций в единичном круге.
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1. Introduction and Results

It is assumed that the reader is familiar with the usual notations and the fundamental results
of R. Nevanlinna theory of meromorphic function as found in [5].

Let f, g be nonconstant meromorphic functions. We say that a meromorphic function
a(z)( 6≡ ∞) is a small function of f if T (r, a) = S(r, f). If N(r, 1/(f −a)) = S(r, f), then we say
that a is an exceptional function of f . Moreover, we denote by N(r, f = a = g) the counting
function of those common zeros of f − a and g − a, where z0 is counted min{p, q} times if
z0 is a common zero of f − a and g − a with multiplicity p and q respectively; as usual, by
N(r, f = a = g) the corresponding reduced counting function; and by NE(r, f = a = g) the
counting function which “counts” only those common zeros of f − a and g − a with the same
multiplicity in N(r, f = a = g). These notations will be used throughout the paper.

Let f, g be two nonconstant meromorphic functions, and let a be a small function of f and
g or a be a constant. We say that f and g share a CM if f − a and g − a have the same zeros
with the same multiplicity; if we ignore the multiplicity, then we say that f and g share a IM.
For the statement of our results, we may need a slightly generalization of the definitions of CM
and IM (see [6],[8]).

In 1997, Hua and Fang proved the following result.

Theorem A[6]. Let f and g be two nonconstant meromorphic functions, and let aj(z) (j =
1, · · · , 4) be distinct small functions of f and g. If f and g share aj(z) (j = 1, 2, 3) CM, and
share a4(z) IM. Then f and g satisfy one of the following cases.

(i) f ≡ g, (ii) F ≡ −G with a(z) ≡ −1, (iii) F +G ≡ 2 with a(z) ≡ 2,
(iv) (F − 1/2)(G− 1/2) ≡ 1/4 with a(z) ≡ 1/2, (v)F ·G ≡ 1 with a(z) ≡ −1,
(vi) (F − 1)(G− 1) ≡ 1 with a(z) ≡ 2, (vii) F +G ≡ 1 with a(z) ≡ 1/2,

where F ≡ f−a1

f−a3

a2−a3

a2−a1
, G ≡ g−a1

g−a3

a2−a3

a2−a1
, and a(z) ≡ a4−a1

a4−a3

a2−a3

a2−a1
.

Remark 1. From the proof of Lemma 6 and Lemma 7 in [6], it is easy to see that the
conclusion is still true if we replace IM with “IM” in Theorem A.

Project supported by the National Natural Science Foundation(Grant No.10771121) of China, and the
Natural Science Foundation(Grant No.Y6090641) of Zhejiang Province.
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For the meromorphic functions that share three values, G. Brosch proved

Theorem B(see [1] or [11]). Let two meromorphic functions f and g share 0, 1, ∞ CM. If
there exists a finite value a( 6= 0, 1) such that g(z) = a whenever f(z) = a. Then f is a Möbius
transformation of g.

In 2008, two of the present authors proved a result on this topic.

Theorem C(see [15, Theorem 2]). Let two nonconstant meromorphic functions f and
g share 0,1, ∞ CM. If there exists a small entire function a(z)( 6≡ 0, 1,∞) of f and g such

that g(z) − a(z) = 0 whenever f(z)
(p)
= a(z) for p = 1, 2. Then f and g must satisfy one of the

following ten cases.
(i) f ≡ g, (ii) f ≡ ag, where a(z)( 6≡ −1), 1 are exceptional functions of f ,
(iii) f − 1 ≡ (1 − a)(g − 1), where a(z)( 6≡ 2), 0 are exceptional functions of f ,
(iv) (f − a)(g − 1 + a) ≡ a(1 − a), where a(z)( 6≡ 1

2
),∞ are exceptional functions

of f , (v)f ≡ −g with a(z) ≡ −1, (vi) f + g ≡ 2 with a(z) ≡ 2,
(vii) (f − 1

2
)(g − 1

2
) ≡ 1

4
with a(z) ≡ 1

2
, (viii) f · g ≡ 1 with a(z) ≡ −1,

(ix) (f − 1)(g − 1) ≡ 1 with a(z) ≡ 2, (x) f + g ≡ 1 with a(z) ≡ 1
2
.

The main purpose of this paper is further to study the uniqueness of meromorphic functions
that share three values or three small functions with the same multiplicities, and to prove the
following three results.

Theorem 1. Let two nonconstant meromorphic functions f and g share 0,1, ∞ CM. If
there exists a small function a(z)( 6≡ 0, 1,∞) of f and g such that N(r, f = a = g) 6= S(r, f).
Then f and g satisfy one of the following five cases.

(i) f ≡ g, (ii) f · g ≡ 1 with a(z) ≡ −1, (iii) f + g ≡ 1 with a(z) ≡ 1
2
,

(iv) (f − 1)(g − 1) ≡ 1 with a(z) ≡ 2,

(v)f(z) = e
∫

a(z)γ′(z)dz−1
eγ(z)−1

, g(z) = e−
∫

a(z)γ′(z)dz−1
e−γ(z)−1

,
where γ(z) is a nonconstant entire function, and a(z) 6≡ −1, 1/2, 2.

Let f be a meromorphic function, let a be a small function of f or be a constant, and let

p be a positive integer. We denote by f(z0)
(p)
= a that z0 is a zero of f − a with multiplicity p.

By the above Theorem 1, we can prove the following result which generalize the small function
a(z) in Theorem C from entire to meromorphic, and is also a great improvement of Theorem
B. In order to avoid needless duplication, we shall omit the details of the proof of the following
Theorem 2 in this paper.

Theorem 2. Let two nonconstant meromorphic functions f and g share 0,1, ∞ CM. If
there exists a small function a(z)( 6≡ 0, 1,∞) of f and g such that g(z) − a(z) = 0 whenever

f(z)
(p)
= a(z) for p = 1, 2. Then the conclusion of Theorem C still holds.

From Theorem 2, we can immediately obtain the following result which improves and
generalizes Theorem A.
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Theorem 3. Let F and G be nonconstant meromorphic functions, and let aj(z)(j =
1, 2, 3, 4) be distinct small functions of F and G. If F and G share aj(z)(j = 1, 2, 3) CM,
and if G(z) = a4(z) whenever F (z) = a4(z). Then f and g satisfy the conclusion of Theorem
C, where f ≡ F−a1

F−a3

a2−a3

a2−a1
, g ≡ G−a1

G−a3

a2−a3

a2−a1
and a ≡ a4−a1

a4−a3

a2−a3

a2−a1
.

2. Lemmas

Lemma 1 (see [16]). Suppose that f1, f2, · · · , fn (n ≥ 3) are meromorphic functions which

are not constants except for fn. Furthermore, let
n∑

j=1

fj(z) ≡ 1. If fn(z) 6≡ 0, and

n∑

j=1

N(r, 1/fj) + (n− 1)
n∑

j=1

N(r, fj) < (λ+ o(1))T (r, fk),

where r ∈ I, k = 1, 2, · · · , n− 1 and λ < 1, then fn(z) ≡ 1.

Lemma 2(see [16]). Let f1, f2 be nonconstant meromorphic functions and c1, c2, c3 be non-
zero constants. If c1f1 + c2f2 ≡ c3, then

T (r, f1) < N(r, 1/f1) +N(r, 1/f2) +N(r, f1) + S(r, f1).

Lemma 3(see [6, Lemma 5]). Let f and g be two nonconstant meromorphic functions that
share 0, 1,∞ CM. If f 6≡ g, then for any small function a(z)( 6≡ 0, 1,∞) of f and g, we have

N(3

(
r,

1

f − a

)
+N(3

(
r,

1

g − a

)
= S(r, f).

3. The Proof of Theorem 1

We suppose first that f 6≡ g. Since f and g share 0, 1,∞ CM, by the second fundamental
theorem due to R. Nevanlinna, we have

(1 + o(1))T (r, f) ≤ N(r, f) +N(r, 1
f
) +N(r, 1

f−1
)

≤ N(r, g) +N(r, 1
g
) +N(r, 1

g−1
) ≤ (3 + o(1))T (r, g). (3.1)

Similarly, we obtain
(1 + o(1))T (r, g) ≤ (3 + o(1))T (r, f). (3.2)

From (3.1) and (3.2), it follows that

S(r, f) = S(r, g). (3.3)

Set

ϕ :=
f ′(f − a)

f(f − 1)
− g′(g − a)

g(g − 1)
. (3.4)
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If ϕ 6≡ 0, then from (3.3), (3.4), the fundamental estimate of the logarithmic derivative, and
the hypothesis that f and g share 0, 1,∞ CM, we have

T (r, ϕ) = S(r, f) + S(r, g) = S(r, f). (3.5)

Since f and g share 0, 1,∞ CM, thus by (3.4) and (3.5) we deduce that

N(r, f = a = g) ≤ N(r, 1/ϕ) + S(r, f) ≤ T (r, ϕ) + S(r, f) = S(r, f),

which contradicts the hypothesis of Theorem 1. Hence, we have ϕ ≡ 0, namely

f ′(f − a)

f(f − 1)
≡ g′(g − a)

g(g − 1)
. (3.6)

Noting that f and g share 0, 1,∞ CM, thus there exist two entire functions α and β such that

f

g
= eα,

f − 1

g − 1
= eβ. (3.7)

Since f 6≡ g, by (3.7) we can deduce that eα 6≡ 1, eβ 6≡ 1 and eβ−α 6≡ 1. Set γ := β − α, then
from (3.7) we have

f =
eβ − 1

eγ − 1
, g =

e−β − 1

e−γ − 1
. (3.8)

Rewriting (3.6) as

(1 − a)

(
f ′

f − 1
− g′

g − 1

)
≡ a

(
g′

g
− f ′

f

)
. (3.9)

By (3.7) and the fact that α = β − γ, we obtain

f

g
= eβ−γ ,

f − 1

g − 1
= eβ, (3.10)

from (3.10), it follows that

f ′

f
− g′

g
= β ′ − γ′,

f ′

f − 1
− g′

g − 1
= β ′. (3.11)

Substitution (3.11) into (3.9) gives
β ′ ≡ aγ′. (3.12)

From (3.8) and (3.12), we have

f =
e
∫

aγ′ − 1

eγ − 1
, g =

e−
∫

aγ′ − 1

e−γ − 1
. (3.13)

We now claim that [a(z) + 1][a(z)− 1
2
][a(z)− 2] ≡ 0 if and only if f and g satisfy one of the

cases (ii)-(iv) of the conclusion of Theorem 1, and thus f is a Möbius transformation of g.
In fact, if a(z) ≡ 1

2
, then from (3.12) we have γ ≡ 2β + c, where c is a constant. Thus, by

(3.7) and the fact that α = β − γ, it follows that

g

f
≡ eγ−β ≡ eβ+c ≡ ec f − 1

g − 1
. (3.14)
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Noting that N(r, f = a = g) 6= S(r, f), we can deduce that there exists a point z0 such that
f(z0) = g(z0) = a(z0) ( 6= 0, 1,∞), which and (3.14) imply that ec = 1, and thus we obtain from
(3.14) that (g − f)(g + f − 1) ≡ 0, that is f + g ≡ 1. Similarly, if a(z) ≡ −1 or a(z) ≡ 2, then
from (3.7), (3.12), the fact α = β − γ, and the hypothesis of Theorem 1, we can also obtain
that f · g ≡ 1 or (f − 1)(g − 1) ≡ 1, respectively.

On the other hand, suppose that there exist four finite complex numbers cj (j = 1, 2, 3, 4)
such that f = c1g+c2

c3g+c4
, where c1c4 6= c2c3. By this and (3.13) we get

2c3 + c4 − 2c2 − c1 = c1e
γ−
∫

aγ′

+ (c3 − c1)e
−
∫

aγ′

+ (c3 + c4)e
∫

aγ′

−c4e−γ+
∫

aγ′ − (c1 + c2)e
γ + (c4 − c2)e

−γ. (3.15)

We note first that γ is not a constant. Otherwise, from (3.12) we know that β is also a
constant, and thus by (3.8) we can deduce that f is a constant, a contradiction. So from this
and the fact that a(z) 6≡ 0, 1, we can also derive that both γ−

∫
aγ′ and

∫
aγ′ are not constants.

In the sequel, by repeatedly applying Lemma 1 to equality (3.15) and its modified forms, and
noting the fact that c1c4 6= c2c3, and that a(z) 6≡ 0, 1, we can prove that one of the following
cases holds.

(a) γ − 2
∫
aγ′ ≡ constant, that is a(z) ≡ 1

2
,

(b) 2γ −
∫
aγ′ ≡constant, that is a(z) ≡ 2, and

(c) γ +
∫
aγ′ ≡constant, that is a(z) ≡ −1.

For this purpose, we shall divide our argument into two cases.

Case 1. A := 2c3 + c4 − 2c2 − c1 = 0.
From (3.15) we have

c1e
γ−
∫

aγ′

+(c3 − c1)e
−
∫

aγ′

+(c3 + c4)e
∫

aγ′ − c4e
−γ+

∫
aγ′ − (c1 + c2)e

γ +(c4 − c2)e
−γ ≡ 0. (3.16)

We now need to consider the following seven subcases.
Subcase 1.1. c1c4(c3 − c1)(c3 + c4)(c1 + c2)(c4 − c2) 6= 0. Rewrite (3.16) as

c1
c2 − c4

e2γ−
∫

aγ′

+
c3 − c1
c2 − c4

eγ−
∫

aγ′

+
c3 + c4
c2 − c4

eγ+
∫

aγ′ − c4
c2 − c4

e
∫

aγ′ − c1 + c2
c2 − c4

e2γ ≡ 1. (3.17)

Suppose that γ +
∫
aγ′ 6≡ constant. Noting the fact that γ −

∫
aγ′,

∫
aγ′, and γ are all not

constant, so we can get by applying Lemma 1 to (3.17) that c1
c2−c4

e2γ−
∫

aγ′ ≡ 1, and thus from
(3.17) it follows that

c3 − c1
c1 + c2

e−γ−
∫

aγ′

+
c3 + c4
c1 + c2

e−γ+
∫

aγ′ − c4
c1 + c2

e−2γ+
∫

aγ′ ≡ 1. (3.18)

By Lemma 1 and (3.18), we get − c4
c1+c2

e−2γ+
∫

aγ′ ≡ 1. From this and (3.18) we get
∫
aγ′ ≡

constant, a contradiction.
Suppose that γ +

∫
aγ′ ≡ constant. Then we must have 2γ −

∫
aγ′ 6≡ constant. Otherwise,

we shall find that γ is a constant, which is impossible. Thus, from (3.17) and Lemma 1 we get
c3+c4
c2−c4

eγ+
∫

aγ′ ≡ 1, and thus again from (3.17) and Lemma 1 we have

c1
c1 + c2

e−
∫

aγ′

+
c3 − c1
c1 + c2

e−γ−
∫

aγ′ − c4
c1 + c2

e−2γ+
∫

aγ′ ≡ 1. (3.19)
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Noting the assumption γ +
∫
aγ′ ≡ constant, so we must have −2γ +

∫
aγ′ 6≡ constant. By

applying Lemma 1 to (3.19), we deduce that γ −
∫
aγ′ ≡ constant, this is also a contradiction.

Therefore, the subcase 1.1 can not occur.
Next, we can use the similar method to deal with the following six subcases: c1 = 0; c4 = 0

but c1 6= 0; c3 − c1 = 0, but c1c4 6= 0; c3 + c4 = 0, but c1c4(c3 − c1) 6= 0; c1 + c2 = 0, but
c1c4(c3 − c1)(c3 + c4) 6= 0; c2 − c4 = 0. For the sake of simplicity, we omit the details.

Case 2. A := 2c3 + c4 − 2c2 − c1 6= 0.
In fact, we shall verify that the case 2 can not occur by dividing it into five subcases. In

case 2, from (3.15) we have

c1
A
eγ−

∫
aγ′

+
c3 − c1
A

e−
∫

aγ′

+
c3 + c4
A

e
∫

aγ′ − c4
A
e−γ+

∫
aγ′ − c1 + c2

A
eγ +

c4 − c2
A

e−γ ≡ 1. (3.20)

If c1c4(c3 − c1)(c3 + c4)(c1 + c2)(c4 − c2) 6= 0, then by (3.20) and Lemma 1, we can get a
contradiction by noting that γ,

∫
aγ′ and γ −

∫
aγ′ are all not constants. So we know that at

least one of the six numbers is zero.
Next, we consider the following five subcases.
Subcase 2.1. c1 = 0. In this subcase, we have c2c3 6= 0. By (3.20) we obtain

c3
A
e−

∫
aγ′

+
c3 + c4
A

e
∫

aγ′ − c4
A
e−γ+

∫
aγ′ − c2

A
eγ +

c4 − c2
A

e−γ ≡ 1. (3.21)

If c3 + c4 = 0, then c4 = −c3 6= 0. So, from (3.21) and Lemma 1 we get c4 − c2 = 0, and
thus a contradiction.

If c3 + c4 6= 0, then we must have c4 6= 0. Otherwise, by applying Lemma 1 to (3.21), we
can get a contradiction. Now again by (3.21) and Lemma 1 we get c4 − c2 = 0, and thus a
contradiction . Thus we have c1 6= 0.

We can easily dealt with the other four subcases c4 = 0; c3 − c1 = 0; c3 + c4 = 0; c1 + c2 = 0
by the similar method.

In the above five subcases, we have shown that c1c4(c3− c1)(c3 + c4)(c1 + c2) 6= 0. Therefore,
we can always obtain a contradiction by using Lemma 1 to (3.20) whether c4 − c2 = 0 holds or
not. The proof of Theorem 1 is completed.
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ЕДИНСТВЕННОСТЬ МЕРОМОРФНЫХ ФУНКЦИЙ С ТРЕМЯ
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Аннотация. В работе изучаются единственность мероморфных функций с тремя разделяю-

щимися значениями или малыми функциями той же кратности.

Ключевые слова: единственность, мероморфная функция, разделяющиеся значения.



УДК 517.9

THE FIRST ORDER SYSTEM EQUATIONS
OF A PRINCIPAL TYPE ON THE PLANE
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Leninskij pr., 53, LPI, Moscow, 119991, Russian Federation, e-mail: nikzhura@gmail.com

Abstract. Boundary value problems for the system equations of a principal type with constant

coefficients on the plane are studied. The half-infinite domains with noncharacteristic boundary and

finite domains with such property are considered. The representation solutions of this systems through

solutions of canonical elliptic and hyperbolic systems is obtained. Also the index formula for associated

problems in Holder weighted classes is founded.

Keywords: principal type equations, noncharacteristic boundary, index formula, function theoretical

approach, canonical systems of first order.

1 Integral representation

On the (x1, x2) - plane R2 we consider a system of linear partial differential equations

∂u

∂x2
− a

∂u

∂x1
= 0, (1)

where u(x) is an unknown l - vector-valued function and a ∈ Rl×l is a constant matrix. The
system (1) is said to be of a composite type (principal one [1, 2]) if it’s characteristic equation

det(a− ν) = 0 (2)

has s1 ≥ 1 complex roots with the positive imaginary part and s2 ≥ 1 real roots, 2s1 + s2 = l.
Let b1 ∈ Cs1×l, b2 ∈ Rs2×l be constant matrices such that nonsingular matrix b = (b1|b1|b2)

reduces a to the Jordan normal form

b−1ab = diag (J1, J1, J2), (3)

where the block matrixes Jk ∈ Csk×sk , k = 1, 2, are composed from Jordan cells. Here J1 has
complex eigenvalues with positive imaginary part and J2 ∈ Rs2×s2 has only real eigenvalues.
Let k2 ≤ s2 denote the maximum of orders of Jordan cells composing J2.

It is valid the following representation theorem [3].
Theorem 1. Any regular solution u of the system (1) can be represented in the form

u = 2Re b1Φ + b2Ψ, (4)

where Φ is a regular solution of the canonical elliptic system

∂Φ

∂x2

= J1
∂Φ

∂x1

, (5)

The work was supported in part by the National Natural Science Foundation of China (NSFC) in the
framework of the bilateral project "Complex Analysis and its applications"(project No. 08-01-92208-GFEN)
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and Ψ is a regular solution of the canonical hyperbolic system

∂Ψ

∂x2
= J2

∂Ψ

∂x1
. (6)

Solutions of the system (5) are said to be a J1 – analytical functions. It is known [4] that a
general solution of this systems can be represented in the form

Φ(x) =

[
exp(x2J1,0)

∂

∂x1

]
φ(x1 + νx2),

where J1 = ν + J10 is decomposition of the matrix J1 into diagonal ν and nilpotent parts. Here
the s1− vector φ(x1 + νx2) consists from components φj(x1 + νjx2), 1 ≤ j ≤ s1, where the
functions φj(z) are analytic in the corresponding domain of the complex plane. The similar
representation

Ψ(x) =

[
exp(x2J2,0)

∂

∂x1

]
ψ(x), (7)

there exists for a s2-vector-valued function ψ = (ψj , 1 ≤ j ≤ s2), where J2 = ν + J2,0 and
ψj(x) = ψ̃k(x1 + νjx2). Note that ψj satisfies the hyperbolic equation

∂ψj

∂x2
= νj

∂ψj

∂x1
, νj ∈ R.

2 Fredholm solvability in the half-infinite domain

Let Cµ(D) be the space of functions satisfying the Holder condition on the the closed domain
D with exponent 0 < µ ≤ 1 (and bounded if D is infinite). The space Cµ,n(D) consists of the
functions with partial derivatives in Cµ,n−1, n ≥ 1, (Cµ,0 = Cµ). These spaces are Banach
with respect to the corresponding norm. It is convenient to write Cµ+0,n for the class ∪ε>0C

µ+ε,n.
If the domain D is infinite we also use the space Cµ,n(D̂) for the set D̂ = D∪{∞} considered

as the compact on the Riemann sphere Ĉ. These definitions also applies to the classes Cµ,n on
curves Γ ⊆ C.

LetD be a half-infinite domain on the complex plane i.e. it is a simple connected domain with
smooth boundary Γ on the Riemann sphere. So the curve Γ permits a smooth parametrization
z = γ(t), t ∈ R, where

γ′(t) ∈ Cµ,k2(R̂). (8)

We consider a boundary value problem

Cu = f on Γ, (9)

for the system (1) where C is a (s1 + s2)× l matrix-valued function, and f is a (s1 + s2) vector-
valued function on Γ = ∂D. This problem is considered in the class Cµ,1(D) of solutions (1)
such that the functions Φ and Ψ belong to this class in the representation (4). More exactly we
say that the vector-valued function Ψ defined by (7) belongs to the class Cµ,1 if the components
of ψ̃ belong to the class Cs2+1−j,µ, j = 1, . . . , s2, as functions of one variable. For brevity it is
assumed here that J2 consists from one Jordan cell, in the general case this definition is regarded
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with respect to each Jordan’s block of J2. In what follows it is assumed that the characteristics
x1 + νjx2 = const of the system (6) don’t tangent of the curve Γ, i.e.

Reγ′(t) + νjImγ
′(t) 6= 0, t ∈ R̂, 1 ≤ j ≤ s2. (10)

Moreover it is assumed that Γ coincide with a straight line in a neighborhood of ∞.
It is assumed also, that

C, f ∈ Cµ,k2(Γ̂) (11)

and
|(b−1u)1| ≤ const(|x|)−1 (12)

as |x| → ∞, where by (b−1u)1 we denote the first s1 elements of the vector b−1u.
Let us put

C =

(
C1

C2

)
s1

s2
, f =

(
f1

f2

)
s1

s2
. (13)

Without loss of generality we can assume that

detC2b2 6= 0 on Γ. (14)

Let us consider
A = C1(1 − b2(C2b2)

−1C2)b1. (15)

We say that (1),(9) is a normal type problem if

detA 6= 0 on Γ . (16)

Theorem 2. Suppose that the conditions (8), (10) for the countour Γ and condition (11)
for C, f are fullfilled. Then the problem (1), (8) is fredholmian in C1,µ(D) if and only if the
normality condition (16) is satisfied, and its index is

æ = −1

π
arg detA

∣∣∣∣
Γ

+ s1 . (17)

3 The case of the basic domain

Let the hyperbolic system (7) be such that the nilpotent part J20 of the matrix J2 is equal to
0 and the diagonal matrix ν = (νiδij) is composed from two real numbers. Suppose that the
boundary ∂D of the finite domain D ⊆ C consists of two noncharacteristic smooth curves Γ1

and Γ2 that connect two corner points τ1 and τ2. We consider the following boundary value
problem

Cju = fj on Γj , j = 1, 2, (18)

for the system (1), where Cj is a (s1 + s2) × l matrix and fj is a (s1 + s2) vector.
Let us introduce the weighted Holder space Cµ

λ (D) = Cµ
λ (D; τ1, τ2), λ = (λ1, λ2) ∈ R2, of

all functions ϕ(z) such that

ϕ(z) = |z − τ1|λ1−µ|z − τ2|λ2−µϕ∗(z),
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where ϕ∗(z) ∈ Cµ(D) and ϕ∗(τ1) = ϕ∗(τ2) = 0. The classes C1,µ
λ of differentiable functions are

introduced by induction under the condition

ϕ ∈ Cµ
λ , ∂ϕ/∂xi ∈ Cµ

λ−1.

We consider the problem (1),(18) in the class C1,µ
λ (D) of solutions (1) such that the functions

Φ and Ψ belong to this class in the representation (4).
Let γj(t) ∈ C1,µ[0, 1] be the smooth parametrization [0, 1] → Γj , j = 1, 2 and the complex

numbers q2i−1 = γ′i(0), q2i = −γ′i(1) are the tangent vectors at the points τ1, τ2. By θj denote
the angle of the sector corresponding to the corner τj. Evidently, θj = arg qk − arg qr, 0 <
arg q < 2π, 0 < θj < 2π, Pj = k, r, j = 1, 2, (more presicely, P1 = 1, 3, P2 = 4, 2), where the
rotation from vector qk to qr about τj within domain is clock-wise.

Let us put the functions of matrices

mj(ζ) = (Re qk + (Im qk)J1)
ζ(Re qr + (Im qr)J1)

−ζ , k, r = Pj ,

and let be
x1(ζ) =

(
e2πiζ − 1

)−1
(
A1(τ1)w1(ζ) + A1(τ1)v1(ζ)w1(ζ)

)
,

x2(ζ) =
(
e2πiζ − 1

)−1
(
A2(τ2)v2(ζ)w2(ζ) + A2(τ2)w2(ζ)

)
,

(19)

where

vj =

(
0 mj(ζ)

m−1
j (ζ) 0

)
, wj(ζ) = e2πiζvj(ζ) − 1, j = 1, 2,

Aj = cj,1(1 − b2(cj,2b2)
−1cj,2)b1, j = 1, 2.

Theorem 3. Suppose that the conditiones (8), (10) for the curves Γ1 and Γ2 including the
corner τ1, τ2 are fullfilled. Let C, f belong to Cµ

λ and the normality condition

detAj(t) 6= 0, t ∈ Γj , j = 1, 2 (20)

be satisfied.
Then the problem (1), (18) is Fredholm in C1,µ

λ (D) if and only if

det xk(ζ) 6= 0, Reζ = λk, k = 1, 2, (21)

and its index is

æ = −1

π
arg det(A1(t)A

−1
2 (t))

∣∣∣∣
1

0

− 1

2π

∑

k=1,2

arg det xk(ζ)

∣∣∣∣
λk+i∞

ζ=λk−i∞

− s1. (22)

4 Some generalazations

We now consider the problem
Cju = fj on Γj , j = 1, 2, (23)

in finite domains D, whose boundary ∂D consists of two curves Γ1 and Γ2 with the corners τ1
and τ2. We assume that the matrix C1(C2) of order (s1 + s2)× l (s1 × l), and the vector f1(f2)
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of order s1 + s2 (s1) are prescribed on Γ1(Γ2) and fj , Cj are belonged Hk
µ,λ, k = s2, j = 1, 2.

Here the curves Γj satisfy conditions (9), (10).
Theorem 4. The assertion of theorem 3 remains in force also for the problem (1), (23),

provided only that Aj mean matrices A1 = C1,1(1− b2(C1,2b2)
−1C1,2)b1, A2 = C2b1, and the last

term −s1 in the formula (22) must be replaced by the s1.
We also studied the questions of asymptotics of the solutions near the corner points and the

smoothness of the solutions up to the boundary. We generalized this approach for the systems
of higher order and for a class of the admissible finite domain with piecewise smooth boundary.
If the order of C1 in the last problem is not equal to s1 + s2 then we investigated this problem
only for the case k2 = 1.

Our study is carried out in the framework of the function-theoretic method [5]. The scheme
of this method is as follows. First of all we express a general regular solution in terms of regular
solutions Φ and Ψ and use an anologue of a theorem of Vekua on integral representations of Φ
and some notions about Ψ which arises from (7). By substituting that into the corresponding
boundary conditions we reduce the problem to system of integral equations on the boundary
of the domain. Another approuch see in [6].
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Аннотация. В работе изучаются краевые задачи для систем уравнений первого порядка

главного типа с постоянными коэффициентами на плоскости. При этом рассматриваются как по-

лубесконечные области с нехарактеристической границей, так и конечные области типа луночки.

Дано представление решений этих систем через решения более простых, так называемых, кано-

нических систем первого порядка эллиптического и гиперболического типов. Получены также

формулы для индекса соответствующих задач в весовых классах Гёльдера.

Ключевые слова: уравнения главного типа, нехарактеристическая граница, канонические

системы первого порядка.
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5) cписка литературных источников, на которые имеются ссылки в тексте рукописи; 

 

6) данных об авторах статьи с указанием места работы,  точного почтового адреса и 

занимаемой должности. Должны быть указаны адреса электронной почты. Эти данные  

необходимо представить также на английском языке. Кроме того, должна быть дана 

латинская транскрипция фамилий авторов. Соответственно, для статей на английском языке, 

должна быть дана транскрипция фамилий авторов кириллицей;  

 

7) списка подписей к рисункам, если они имеются в рукописи; 

 

8) укороченного заголовка статьи, состоящего  не более, чем из трѐх  слов, который 

печатается в колонтитулах журнала.  

 

В редакцию присылается электронный вариант рукописи. Он должен быть 

подготовлен в редакторе LaТеХ (LaTeX2e, AMSLaTeX). При этом нужно также прислать 

файл с pdf-копией рукописи для того, чтобы редакция имела возможность сравнения с 

авторским оригиналом при редактировании.  

 

Если в рукописи имеются рисунки, то они должны быть подготовлены в формате 

"eps"  и соответствующие им файлы необходимо пронумеровать в соответствии со списком 

подписей к рисункам (см. п.7). 

 

 

Особые требования к электронному набору в редакторе LaTeX следующие: 

 

1) нельзя использовать вводимые авторами новые нестандартные команды;  

 

2) выключные формулы должны быть пронумерованы в порядке их появления в 

рукописи в том случае, если на них есть ссылки в тексте. При использовании режима 

equation для набора выключных формул обязательно употребление для их нумерации 

цифровых меток, соответствующих номеру формулы.  Допускается применение для 

нумерации формул цифр, снабжѐнных штрихами. Однако, этим нужно пользоваться только 

в случае крайней  необходимости с целью более точной передачи смысла текста. В случае, 

если в статье имеются части в виде приложений, нумерация содержащихся в них 

выключных формул может быть не зависимой от нумерации основного текста. При этом в 

приложениях рекомендуется  употребление двойной нумерации,  в которой первый символ 

может быть прописной буквой или номером приложения;   

 

3) то же самое касается литературных источников, на которые имеются ссылки в 

тексте рукописи. Их нужно отмечать цифрами в порядке появления в тексте, и ни в коем 

случае не использовать метки другого типа.   

  
 


